645 \% ) { 2 }^{ 2 } \div 4= \frac{ 15 }{ 9 \prod_{ \frac{ 413 }{ 6x \times 273 \% \prod_{ 433 \sqrt{ \frac{ 6 }{ 2 \sqrt{ 6 \prod_{ \frac{ 43416 }{ \frac{ 3 }{ \frac{ .171419 \% x361643 \times \div x3) \frac{ 2 }{ 936 \sqrt{ 396)))))) { \left(5 \sqrt{ 5 } \right) }^{ 2 } } } }{ } } } }^{ } \left( \right) } } } }^{ } \left( \right) } }^{ } \left( \right) }
Evaluate
\frac{129}{20}=6.45
Factor
\frac{3 \cdot 43}{2 ^ {2} \cdot 5} = 6\frac{9}{20} = 6.45
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)645}\\\end{array}
Use the 1^{st} digit 6 from dividend 645
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)645}\\\end{array}
Since 6 is less than 100, use the next digit 4 from dividend 645 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)645}\\\end{array}
Use the 2^{nd} digit 4 from dividend 645
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)645}\\\end{array}
Since 64 is less than 100, use the next digit 5 from dividend 645 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)645}\\\end{array}
Use the 3^{rd} digit 5 from dividend 645
\begin{array}{l}\phantom{100)}006\phantom{6}\\100\overline{)645}\\\phantom{100)}\underline{\phantom{}600\phantom{}}\\\phantom{100)9}45\\\end{array}
Find closest multiple of 100 to 645. We see that 6 \times 100 = 600 is the nearest. Now subtract 600 from 645 to get reminder 45. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }45
Since 45 is less than 100, stop the division. The reminder is 45. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}