Evaluate
\frac{32171}{6}\approx 5361.833333333
Factor
\frac{53 \cdot 607}{2 \cdot 3} = 5361\frac{5}{6} = 5361.833333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)64342}\\\end{array}
Use the 1^{st} digit 6 from dividend 64342
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)64342}\\\end{array}
Since 6 is less than 12, use the next digit 4 from dividend 64342 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)64342}\\\end{array}
Use the 2^{nd} digit 4 from dividend 64342
\begin{array}{l}\phantom{12)}05\phantom{4}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}4\\\end{array}
Find closest multiple of 12 to 64. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 64 to get reminder 4. Add 5 to quotient.
\begin{array}{l}\phantom{12)}05\phantom{5}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\end{array}
Use the 3^{rd} digit 3 from dividend 64342
\begin{array}{l}\phantom{12)}053\phantom{6}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)99}7\\\end{array}
Find closest multiple of 12 to 43. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 43 to get reminder 7. Add 3 to quotient.
\begin{array}{l}\phantom{12)}053\phantom{7}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)99}74\\\end{array}
Use the 4^{th} digit 4 from dividend 64342
\begin{array}{l}\phantom{12)}0536\phantom{8}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)99}74\\\phantom{12)}\underline{\phantom{99}72\phantom{9}}\\\phantom{12)999}2\\\end{array}
Find closest multiple of 12 to 74. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 74 to get reminder 2. Add 6 to quotient.
\begin{array}{l}\phantom{12)}0536\phantom{9}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)99}74\\\phantom{12)}\underline{\phantom{99}72\phantom{9}}\\\phantom{12)999}22\\\end{array}
Use the 5^{th} digit 2 from dividend 64342
\begin{array}{l}\phantom{12)}05361\phantom{10}\\12\overline{)64342}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}43\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)99}74\\\phantom{12)}\underline{\phantom{99}72\phantom{9}}\\\phantom{12)999}22\\\phantom{12)}\underline{\phantom{999}12\phantom{}}\\\phantom{12)999}10\\\end{array}
Find closest multiple of 12 to 22. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 22 to get reminder 10. Add 1 to quotient.
\text{Quotient: }5361 \text{Reminder: }10
Since 10 is less than 12, stop the division. The reminder is 10. The topmost line 05361 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5361.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}