Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(8+a^{6}\right)\left(8-a^{6}\right)
Rewrite 64-a^{12} as 8^{2}-\left(-a^{6}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{6}+8\right)\left(-a^{6}+8\right)
Reorder the terms.
\left(a^{2}+2\right)\left(a^{4}-2a^{2}+4\right)
Consider a^{6}+8. Rewrite a^{6}+8 as \left(a^{2}\right)^{3}+2^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a^{2}-2\right)\left(-a^{4}-2a^{2}-4\right)
Consider -a^{6}+8. Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power -a^{6} and n divides the constant factor 8. One such factor is a^{2}-2. Factor the polynomial by dividing it by this factor.
\left(-a^{4}-2a^{2}-4\right)\left(a^{2}-2\right)\left(a^{2}+2\right)\left(a^{4}-2a^{2}+4\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -a^{4}-2a^{2}-4,a^{2}-2,a^{2}+2,a^{4}-2a^{2}+4.