Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

320+64x^{2}=18-3x^{2}
Use the distributive property to multiply 64 by 5+x^{2}.
320+64x^{2}+3x^{2}=18
Add 3x^{2} to both sides.
320+67x^{2}=18
Combine 64x^{2} and 3x^{2} to get 67x^{2}.
67x^{2}=18-320
Subtract 320 from both sides.
67x^{2}=-302
Subtract 320 from 18 to get -302.
x^{2}=-\frac{302}{67}
Divide both sides by 67.
x=\frac{\sqrt{20234}i}{67} x=-\frac{\sqrt{20234}i}{67}
The equation is now solved.
320+64x^{2}=18-3x^{2}
Use the distributive property to multiply 64 by 5+x^{2}.
320+64x^{2}-18=-3x^{2}
Subtract 18 from both sides.
302+64x^{2}=-3x^{2}
Subtract 18 from 320 to get 302.
302+64x^{2}+3x^{2}=0
Add 3x^{2} to both sides.
302+67x^{2}=0
Combine 64x^{2} and 3x^{2} to get 67x^{2}.
67x^{2}+302=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 67\times 302}}{2\times 67}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 67 for a, 0 for b, and 302 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 67\times 302}}{2\times 67}
Square 0.
x=\frac{0±\sqrt{-268\times 302}}{2\times 67}
Multiply -4 times 67.
x=\frac{0±\sqrt{-80936}}{2\times 67}
Multiply -268 times 302.
x=\frac{0±2\sqrt{20234}i}{2\times 67}
Take the square root of -80936.
x=\frac{0±2\sqrt{20234}i}{134}
Multiply 2 times 67.
x=\frac{\sqrt{20234}i}{67}
Now solve the equation x=\frac{0±2\sqrt{20234}i}{134} when ± is plus.
x=-\frac{\sqrt{20234}i}{67}
Now solve the equation x=\frac{0±2\sqrt{20234}i}{134} when ± is minus.
x=\frac{\sqrt{20234}i}{67} x=-\frac{\sqrt{20234}i}{67}
The equation is now solved.