Solve for x (complex solution)
x=\frac{-5\sqrt{3}i-5}{8}\approx -0.625-1.082531755i
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
x=\frac{-5+5\sqrt{3}i}{8}\approx -0.625+1.082531755i
Solve for x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
±\frac{125}{64},±\frac{125}{32},±\frac{125}{16},±\frac{125}{8},±\frac{125}{4},±\frac{125}{2},±125,±\frac{25}{64},±\frac{25}{32},±\frac{25}{16},±\frac{25}{8},±\frac{25}{4},±\frac{25}{2},±25,±\frac{5}{64},±\frac{5}{32},±\frac{5}{16},±\frac{5}{8},±\frac{5}{4},±\frac{5}{2},±5,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -125 and q divides the leading coefficient 64. List all candidates \frac{p}{q}.
x=\frac{5}{4}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
16x^{2}+20x+25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 64x^{3}-125 by 4\left(x-\frac{5}{4}\right)=4x-5 to get 16x^{2}+20x+25. Solve the equation where the result equals to 0.
x=\frac{-20±\sqrt{20^{2}-4\times 16\times 25}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 20 for b, and 25 for c in the quadratic formula.
x=\frac{-20±\sqrt{-1200}}{32}
Do the calculations.
x=\frac{-5i\sqrt{3}-5}{8} x=\frac{-5+5i\sqrt{3}}{8}
Solve the equation 16x^{2}+20x+25=0 when ± is plus and when ± is minus.
x=\frac{5}{4} x=\frac{-5i\sqrt{3}-5}{8} x=\frac{-5+5i\sqrt{3}}{8}
List all found solutions.
±\frac{125}{64},±\frac{125}{32},±\frac{125}{16},±\frac{125}{8},±\frac{125}{4},±\frac{125}{2},±125,±\frac{25}{64},±\frac{25}{32},±\frac{25}{16},±\frac{25}{8},±\frac{25}{4},±\frac{25}{2},±25,±\frac{5}{64},±\frac{5}{32},±\frac{5}{16},±\frac{5}{8},±\frac{5}{4},±\frac{5}{2},±5,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -125 and q divides the leading coefficient 64. List all candidates \frac{p}{q}.
x=\frac{5}{4}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
16x^{2}+20x+25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 64x^{3}-125 by 4\left(x-\frac{5}{4}\right)=4x-5 to get 16x^{2}+20x+25. Solve the equation where the result equals to 0.
x=\frac{-20±\sqrt{20^{2}-4\times 16\times 25}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 20 for b, and 25 for c in the quadratic formula.
x=\frac{-20±\sqrt{-1200}}{32}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{5}{4}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}