Solve for x (complex solution)
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16}\approx -0.419262746+0.582961191i
x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}\approx -0.419262746-0.582961191i
Graph
Share
Copied to clipboard
64x^{2}+24\sqrt{5}x+33=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24\sqrt{5}±\sqrt{\left(24\sqrt{5}\right)^{2}-4\times 64\times 33}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 24\sqrt{5} for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24\sqrt{5}±\sqrt{2880-4\times 64\times 33}}{2\times 64}
Square 24\sqrt{5}.
x=\frac{-24\sqrt{5}±\sqrt{2880-256\times 33}}{2\times 64}
Multiply -4 times 64.
x=\frac{-24\sqrt{5}±\sqrt{2880-8448}}{2\times 64}
Multiply -256 times 33.
x=\frac{-24\sqrt{5}±\sqrt{-5568}}{2\times 64}
Add 2880 to -8448.
x=\frac{-24\sqrt{5}±8\sqrt{87}i}{2\times 64}
Take the square root of -5568.
x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128}
Multiply 2 times 64.
x=\frac{-24\sqrt{5}+8\sqrt{87}i}{128}
Now solve the equation x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128} when ± is plus. Add -24\sqrt{5} to 8i\sqrt{87}.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16}
Divide -24\sqrt{5}+8i\sqrt{87} by 128.
x=\frac{-8\sqrt{87}i-24\sqrt{5}}{128}
Now solve the equation x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128} when ± is minus. Subtract 8i\sqrt{87} from -24\sqrt{5}.
x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
Divide -24\sqrt{5}-8i\sqrt{87} by 128.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16} x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
The equation is now solved.
64x^{2}+24\sqrt{5}x+33=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
64x^{2}+24\sqrt{5}x+33-33=-33
Subtract 33 from both sides of the equation.
64x^{2}+24\sqrt{5}x=-33
Subtracting 33 from itself leaves 0.
\frac{64x^{2}+24\sqrt{5}x}{64}=-\frac{33}{64}
Divide both sides by 64.
x^{2}+\frac{24\sqrt{5}}{64}x=-\frac{33}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+\frac{3\sqrt{5}}{8}x=-\frac{33}{64}
Divide 24\sqrt{5} by 64.
x^{2}+\frac{3\sqrt{5}}{8}x+\left(\frac{3\sqrt{5}}{16}\right)^{2}=-\frac{33}{64}+\left(\frac{3\sqrt{5}}{16}\right)^{2}
Divide \frac{3\sqrt{5}}{8}, the coefficient of the x term, by 2 to get \frac{3\sqrt{5}}{16}. Then add the square of \frac{3\sqrt{5}}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}=-\frac{33}{64}+\frac{45}{256}
Square \frac{3\sqrt{5}}{16}.
x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}=-\frac{87}{256}
Add -\frac{33}{64} to \frac{45}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3\sqrt{5}}{16}\right)^{2}=-\frac{87}{256}
Factor x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3\sqrt{5}}{16}\right)^{2}}=\sqrt{-\frac{87}{256}}
Take the square root of both sides of the equation.
x+\frac{3\sqrt{5}}{16}=\frac{\sqrt{87}i}{16} x+\frac{3\sqrt{5}}{16}=-\frac{\sqrt{87}i}{16}
Simplify.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16} x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
Subtract \frac{3\sqrt{5}}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}