Solve for x (complex solution)
x=\frac{\sqrt{2}i}{4}-\frac{7}{8}\approx -0.875+0.353553391i
x=-\frac{\sqrt{2}i}{4}-\frac{7}{8}\approx -0.875-0.353553391i
Graph
Share
Copied to clipboard
64x^{2}+112x+57=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-112±\sqrt{112^{2}-4\times 64\times 57}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 112 for b, and 57 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\times 64\times 57}}{2\times 64}
Square 112.
x=\frac{-112±\sqrt{12544-256\times 57}}{2\times 64}
Multiply -4 times 64.
x=\frac{-112±\sqrt{12544-14592}}{2\times 64}
Multiply -256 times 57.
x=\frac{-112±\sqrt{-2048}}{2\times 64}
Add 12544 to -14592.
x=\frac{-112±32\sqrt{2}i}{2\times 64}
Take the square root of -2048.
x=\frac{-112±32\sqrt{2}i}{128}
Multiply 2 times 64.
x=\frac{-112+2\times 2^{\frac{9}{2}}i}{128}
Now solve the equation x=\frac{-112±32\sqrt{2}i}{128} when ± is plus. Add -112 to 32i\sqrt{2}.
x=\frac{2i}{2^{\frac{5}{2}}}-\frac{7}{8}
Divide -112+2i\times 2^{\frac{9}{2}} by 128.
x=\frac{-2\times 2^{\frac{9}{2}}i-112}{128}
Now solve the equation x=\frac{-112±32\sqrt{2}i}{128} when ± is minus. Subtract 32i\sqrt{2} from -112.
x=\frac{-2i}{2^{\frac{5}{2}}}-\frac{7}{8}
Divide -112-2i\times 2^{\frac{9}{2}} by 128.
x=\frac{2i}{2^{\frac{5}{2}}}-\frac{7}{8} x=\frac{-2i}{2^{\frac{5}{2}}}-\frac{7}{8}
The equation is now solved.
64x^{2}+112x+57=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
64x^{2}+112x+57-57=-57
Subtract 57 from both sides of the equation.
64x^{2}+112x=-57
Subtracting 57 from itself leaves 0.
\frac{64x^{2}+112x}{64}=-\frac{57}{64}
Divide both sides by 64.
x^{2}+\frac{112}{64}x=-\frac{57}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+\frac{7}{4}x=-\frac{57}{64}
Reduce the fraction \frac{112}{64} to lowest terms by extracting and canceling out 16.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=-\frac{57}{64}+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{-57+49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{1}{8}
Add -\frac{57}{64} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{8}\right)^{2}=-\frac{1}{8}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{-\frac{1}{8}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{\sqrt{2}i}{4} x+\frac{7}{8}=-\frac{\sqrt{2}i}{4}
Simplify.
x=\frac{2i}{2^{\frac{5}{2}}}-\frac{7}{8} x=\frac{-2i}{2^{\frac{5}{2}}}-\frac{7}{8}
Subtract \frac{7}{8} from both sides of the equation.
x ^ 2 +\frac{7}{4}x +\frac{57}{64} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 64
r + s = -\frac{7}{4} rs = \frac{57}{64}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{8} - u s = -\frac{7}{8} + u
Two numbers r and s sum up to -\frac{7}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{7}{4} = -\frac{7}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{8} - u) (-\frac{7}{8} + u) = \frac{57}{64}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{57}{64}
\frac{49}{64} - u^2 = \frac{57}{64}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{57}{64}-\frac{49}{64} = \frac{1}{8}
Simplify the expression by subtracting \frac{49}{64} on both sides
u^2 = -\frac{1}{8} u = \pm\sqrt{-\frac{1}{8}} = \pm \frac{1}{\sqrt{8}}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{8} - \frac{1}{\sqrt{8}}i = -0.875 - 0.354i s = -\frac{7}{8} + \frac{1}{\sqrt{8}}i = -0.875 + 0.354i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}