Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

64\left(x+2x^{2}\right)
Factor out 64.
x\left(1+2x\right)
Consider x+2x^{2}. Factor out x.
64x\left(2x+1\right)
Rewrite the complete factored expression.
128x^{2}+64x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-64±\sqrt{64^{2}}}{2\times 128}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-64±64}{2\times 128}
Take the square root of 64^{2}.
x=\frac{-64±64}{256}
Multiply 2 times 128.
x=\frac{0}{256}
Now solve the equation x=\frac{-64±64}{256} when ± is plus. Add -64 to 64.
x=0
Divide 0 by 256.
x=-\frac{128}{256}
Now solve the equation x=\frac{-64±64}{256} when ± is minus. Subtract 64 from -64.
x=-\frac{1}{2}
Reduce the fraction \frac{-128}{256} to lowest terms by extracting and canceling out 128.
128x^{2}+64x=128x\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{2} for x_{2}.
128x^{2}+64x=128x\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
128x^{2}+64x=128x\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
128x^{2}+64x=64x\left(2x+1\right)
Cancel out 2, the greatest common factor in 128 and 2.