Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(8m^{6}y^{3}+m^{3}n^{6}\right)
Factor out 8.
m^{3}\left(8m^{3}y^{3}+n^{6}\right)
Consider 8m^{6}y^{3}+m^{3}n^{6}. Factor out m^{3}.
\left(2my+n^{2}\right)\left(4m^{2}y^{2}-2myn^{2}+n^{4}\right)
Consider 8m^{3}y^{3}+n^{6}. Rewrite 8m^{3}y^{3}+n^{6} as \left(2my\right)^{3}+\left(n^{2}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
8m^{3}\left(2my+n^{2}\right)\left(4m^{2}y^{2}-2myn^{2}+n^{4}\right)
Rewrite the complete factored expression.