Factor
4\left(-m-2\right)\left(9m-2\right)
Evaluate
16-64m-36m^{2}
Share
Copied to clipboard
4\left(16m^{2}-16m-25m^{2}+4\right)
Factor out 4.
-9m^{2}-16m+4
Consider 16m^{2}-16m-25m^{2}+4. Multiply and combine like terms.
a+b=-16 ab=-9\times 4=-36
Consider -9m^{2}-16m+4. Factor the expression by grouping. First, the expression needs to be rewritten as -9m^{2}+am+bm+4. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=2 b=-18
The solution is the pair that gives sum -16.
\left(-9m^{2}+2m\right)+\left(-18m+4\right)
Rewrite -9m^{2}-16m+4 as \left(-9m^{2}+2m\right)+\left(-18m+4\right).
-m\left(9m-2\right)-2\left(9m-2\right)
Factor out -m in the first and -2 in the second group.
\left(9m-2\right)\left(-m-2\right)
Factor out common term 9m-2 by using distributive property.
4\left(9m-2\right)\left(-m-2\right)
Rewrite the complete factored expression.
-36m^{2}-64m+16
Combine 64m^{2} and -100m^{2} to get -36m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}