Factor
\left(2a-b\right)^{3}\left(2a+b\right)^{3}
Evaluate
\left(4a^{2}-b^{2}\right)^{3}
Share
Copied to clipboard
64a^{6}-48b^{2}a^{4}+12b^{4}a^{2}-b^{6}
Consider 64a^{6}-48a^{4}b^{2}+12a^{2}b^{4}-b^{6} as a polynomial over variable a.
\left(4a^{2}-b^{2}\right)\left(16a^{4}-8a^{2}b^{2}+b^{4}\right)
Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 64a^{6} and n divides the constant factor -b^{6}. One such factor is 4a^{2}-b^{2}. Factor the polynomial by dividing it by this factor.
\left(2a-b\right)\left(2a+b\right)
Consider 4a^{2}-b^{2}. Rewrite 4a^{2}-b^{2} as \left(2a\right)^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
16a^{4}-8b^{2}a^{2}+b^{4}
Consider 16a^{4}-8a^{2}b^{2}+b^{4}. Consider 16a^{4}-8a^{2}b^{2}+b^{4} as a polynomial over variable a.
\left(4a^{2}-b^{2}\right)\left(4a^{2}-b^{2}\right)
Find one factor of the form ua^{v}+w, where ua^{v} divides the monomial with the highest power 16a^{4} and w divides the constant factor b^{4}. One such factor is 4a^{2}-b^{2}. Factor the polynomial by dividing it by this factor.
\left(2a-b\right)\left(2a+b\right)
Consider 4a^{2}-b^{2}. Rewrite 4a^{2}-b^{2} as \left(2a\right)^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(2a-b\right)^{3}\left(2a+b\right)^{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}