Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

64a^{2}+48a-36=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-48±\sqrt{48^{2}-4\times 64\left(-36\right)}}{2\times 64}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 64 for a, 48 for b, and -36 for c in the quadratic formula.
a=\frac{-48±48\sqrt{5}}{128}
Do the calculations.
a=\frac{3\sqrt{5}-3}{8} a=\frac{-3\sqrt{5}-3}{8}
Solve the equation a=\frac{-48±48\sqrt{5}}{128} when ± is plus and when ± is minus.
64\left(a-\frac{3\sqrt{5}-3}{8}\right)\left(a-\frac{-3\sqrt{5}-3}{8}\right)>0
Rewrite the inequality by using the obtained solutions.
a-\frac{3\sqrt{5}-3}{8}<0 a-\frac{-3\sqrt{5}-3}{8}<0
For the product to be positive, a-\frac{3\sqrt{5}-3}{8} and a-\frac{-3\sqrt{5}-3}{8} have to be both negative or both positive. Consider the case when a-\frac{3\sqrt{5}-3}{8} and a-\frac{-3\sqrt{5}-3}{8} are both negative.
a<\frac{-3\sqrt{5}-3}{8}
The solution satisfying both inequalities is a<\frac{-3\sqrt{5}-3}{8}.
a-\frac{-3\sqrt{5}-3}{8}>0 a-\frac{3\sqrt{5}-3}{8}>0
Consider the case when a-\frac{3\sqrt{5}-3}{8} and a-\frac{-3\sqrt{5}-3}{8} are both positive.
a>\frac{3\sqrt{5}-3}{8}
The solution satisfying both inequalities is a>\frac{3\sqrt{5}-3}{8}.
a<\frac{-3\sqrt{5}-3}{8}\text{; }a>\frac{3\sqrt{5}-3}{8}
The final solution is the union of the obtained solutions.