Solve for t
t = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
Share
Copied to clipboard
64t+64\left(-\frac{3}{4}\right)=82t
Use the distributive property to multiply 64 by t-\frac{3}{4}.
64t+\frac{64\left(-3\right)}{4}=82t
Express 64\left(-\frac{3}{4}\right) as a single fraction.
64t+\frac{-192}{4}=82t
Multiply 64 and -3 to get -192.
64t-48=82t
Divide -192 by 4 to get -48.
64t-48-82t=0
Subtract 82t from both sides.
-18t-48=0
Combine 64t and -82t to get -18t.
-18t=48
Add 48 to both sides. Anything plus zero gives itself.
t=\frac{48}{-18}
Divide both sides by -18.
t=-\frac{8}{3}
Reduce the fraction \frac{48}{-18} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}