Solve for x
x\in \left(-\infty,-\frac{\sqrt{14}}{2}\right)\cup \left(\frac{\sqrt{14}}{2},\infty\right)
Graph
Share
Copied to clipboard
64x^{2}>28+56x^{2}
Use the distributive property to multiply 28 by 1+2x^{2}.
64x^{2}-56x^{2}>28
Subtract 56x^{2} from both sides.
8x^{2}>28
Combine 64x^{2} and -56x^{2} to get 8x^{2}.
x^{2}>\frac{28}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
x^{2}>\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
x^{2}>\left(\frac{\sqrt{14}}{2}\right)^{2}
Calculate the square root of \frac{7}{2} and get \frac{\sqrt{14}}{2}. Rewrite \frac{7}{2} as \left(\frac{\sqrt{14}}{2}\right)^{2}.
|x|>\frac{\sqrt{14}}{2}
Inequality holds for |x|>\frac{\sqrt{14}}{2}.
x<-\frac{\sqrt{14}}{2}\text{; }x>\frac{\sqrt{14}}{2}
Rewrite |x|>\frac{\sqrt{14}}{2} as x<-\frac{\sqrt{14}}{2}\text{; }x>\frac{\sqrt{14}}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}