Solve for x
x=\frac{6\sqrt{2}+48}{155}\approx 0.36442117
x=\frac{48-6\sqrt{2}}{155}\approx 0.254933669
Graph
Share
Copied to clipboard
64\left(0.09-0.6x+x^{2}\right)=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.3-x\right)^{2}.
5.76-38.4x+64x^{2}=2x^{2}
Use the distributive property to multiply 64 by 0.09-0.6x+x^{2}.
5.76-38.4x+64x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
5.76-38.4x+62x^{2}=0
Combine 64x^{2} and -2x^{2} to get 62x^{2}.
62x^{2}-38.4x+5.76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-38.4\right)±\sqrt{\left(-38.4\right)^{2}-4\times 62\times 5.76}}{2\times 62}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 62 for a, -38.4 for b, and 5.76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38.4\right)±\sqrt{1474.56-4\times 62\times 5.76}}{2\times 62}
Square -38.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-38.4\right)±\sqrt{1474.56-248\times 5.76}}{2\times 62}
Multiply -4 times 62.
x=\frac{-\left(-38.4\right)±\sqrt{\frac{36864-35712}{25}}}{2\times 62}
Multiply -248 times 5.76.
x=\frac{-\left(-38.4\right)±\sqrt{46.08}}{2\times 62}
Add 1474.56 to -1428.48 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-38.4\right)±\frac{24\sqrt{2}}{5}}{2\times 62}
Take the square root of 46.08.
x=\frac{38.4±\frac{24\sqrt{2}}{5}}{2\times 62}
The opposite of -38.4 is 38.4.
x=\frac{38.4±\frac{24\sqrt{2}}{5}}{124}
Multiply 2 times 62.
x=\frac{24\sqrt{2}+192}{5\times 124}
Now solve the equation x=\frac{38.4±\frac{24\sqrt{2}}{5}}{124} when ± is plus. Add 38.4 to \frac{24\sqrt{2}}{5}.
x=\frac{6\sqrt{2}+48}{155}
Divide \frac{192+24\sqrt{2}}{5} by 124.
x=\frac{192-24\sqrt{2}}{5\times 124}
Now solve the equation x=\frac{38.4±\frac{24\sqrt{2}}{5}}{124} when ± is minus. Subtract \frac{24\sqrt{2}}{5} from 38.4.
x=\frac{48-6\sqrt{2}}{155}
Divide \frac{192-24\sqrt{2}}{5} by 124.
x=\frac{6\sqrt{2}+48}{155} x=\frac{48-6\sqrt{2}}{155}
The equation is now solved.
64\left(0.09-0.6x+x^{2}\right)=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.3-x\right)^{2}.
5.76-38.4x+64x^{2}=2x^{2}
Use the distributive property to multiply 64 by 0.09-0.6x+x^{2}.
5.76-38.4x+64x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
5.76-38.4x+62x^{2}=0
Combine 64x^{2} and -2x^{2} to get 62x^{2}.
-38.4x+62x^{2}=-5.76
Subtract 5.76 from both sides. Anything subtracted from zero gives its negation.
62x^{2}-38.4x=-5.76
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{62x^{2}-38.4x}{62}=-\frac{5.76}{62}
Divide both sides by 62.
x^{2}+\left(-\frac{38.4}{62}\right)x=-\frac{5.76}{62}
Dividing by 62 undoes the multiplication by 62.
x^{2}-\frac{96}{155}x=-\frac{5.76}{62}
Divide -38.4 by 62.
x^{2}-\frac{96}{155}x=-\frac{72}{775}
Divide -5.76 by 62.
x^{2}-\frac{96}{155}x+\left(-\frac{48}{155}\right)^{2}=-\frac{72}{775}+\left(-\frac{48}{155}\right)^{2}
Divide -\frac{96}{155}, the coefficient of the x term, by 2 to get -\frac{48}{155}. Then add the square of -\frac{48}{155} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{96}{155}x+\frac{2304}{24025}=-\frac{72}{775}+\frac{2304}{24025}
Square -\frac{48}{155} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{96}{155}x+\frac{2304}{24025}=\frac{72}{24025}
Add -\frac{72}{775} to \frac{2304}{24025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{48}{155}\right)^{2}=\frac{72}{24025}
Factor x^{2}-\frac{96}{155}x+\frac{2304}{24025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{48}{155}\right)^{2}}=\sqrt{\frac{72}{24025}}
Take the square root of both sides of the equation.
x-\frac{48}{155}=\frac{6\sqrt{2}}{155} x-\frac{48}{155}=-\frac{6\sqrt{2}}{155}
Simplify.
x=\frac{6\sqrt{2}+48}{155} x=\frac{48-6\sqrt{2}}{155}
Add \frac{48}{155} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}