Solve for x (complex solution)
x=\frac{-3+\sqrt{18167}i}{64}\approx -0.046875+2.106015844i
x=\frac{-\sqrt{18167}i-3}{64}\approx -0.046875-2.106015844i
Graph
Share
Copied to clipboard
320+64x^{2}=\left(18-3x\right)\times 2
Use the distributive property to multiply 64 by 5+x^{2}.
320+64x^{2}=36-6x
Use the distributive property to multiply 18-3x by 2.
320+64x^{2}-36=-6x
Subtract 36 from both sides.
284+64x^{2}=-6x
Subtract 36 from 320 to get 284.
284+64x^{2}+6x=0
Add 6x to both sides.
64x^{2}+6x+284=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 64\times 284}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 6 for b, and 284 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 64\times 284}}{2\times 64}
Square 6.
x=\frac{-6±\sqrt{36-256\times 284}}{2\times 64}
Multiply -4 times 64.
x=\frac{-6±\sqrt{36-72704}}{2\times 64}
Multiply -256 times 284.
x=\frac{-6±\sqrt{-72668}}{2\times 64}
Add 36 to -72704.
x=\frac{-6±2\sqrt{18167}i}{2\times 64}
Take the square root of -72668.
x=\frac{-6±2\sqrt{18167}i}{128}
Multiply 2 times 64.
x=\frac{-6+2\sqrt{18167}i}{128}
Now solve the equation x=\frac{-6±2\sqrt{18167}i}{128} when ± is plus. Add -6 to 2i\sqrt{18167}.
x=\frac{-3+\sqrt{18167}i}{64}
Divide -6+2i\sqrt{18167} by 128.
x=\frac{-2\sqrt{18167}i-6}{128}
Now solve the equation x=\frac{-6±2\sqrt{18167}i}{128} when ± is minus. Subtract 2i\sqrt{18167} from -6.
x=\frac{-\sqrt{18167}i-3}{64}
Divide -6-2i\sqrt{18167} by 128.
x=\frac{-3+\sqrt{18167}i}{64} x=\frac{-\sqrt{18167}i-3}{64}
The equation is now solved.
320+64x^{2}=\left(18-3x\right)\times 2
Use the distributive property to multiply 64 by 5+x^{2}.
320+64x^{2}=36-6x
Use the distributive property to multiply 18-3x by 2.
320+64x^{2}+6x=36
Add 6x to both sides.
64x^{2}+6x=36-320
Subtract 320 from both sides.
64x^{2}+6x=-284
Subtract 320 from 36 to get -284.
\frac{64x^{2}+6x}{64}=-\frac{284}{64}
Divide both sides by 64.
x^{2}+\frac{6}{64}x=-\frac{284}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+\frac{3}{32}x=-\frac{284}{64}
Reduce the fraction \frac{6}{64} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{32}x=-\frac{71}{16}
Reduce the fraction \frac{-284}{64} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{3}{32}x+\left(\frac{3}{64}\right)^{2}=-\frac{71}{16}+\left(\frac{3}{64}\right)^{2}
Divide \frac{3}{32}, the coefficient of the x term, by 2 to get \frac{3}{64}. Then add the square of \frac{3}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{32}x+\frac{9}{4096}=-\frac{71}{16}+\frac{9}{4096}
Square \frac{3}{64} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{32}x+\frac{9}{4096}=-\frac{18167}{4096}
Add -\frac{71}{16} to \frac{9}{4096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{64}\right)^{2}=-\frac{18167}{4096}
Factor x^{2}+\frac{3}{32}x+\frac{9}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{64}\right)^{2}}=\sqrt{-\frac{18167}{4096}}
Take the square root of both sides of the equation.
x+\frac{3}{64}=\frac{\sqrt{18167}i}{64} x+\frac{3}{64}=-\frac{\sqrt{18167}i}{64}
Simplify.
x=\frac{-3+\sqrt{18167}i}{64} x=\frac{-\sqrt{18167}i-3}{64}
Subtract \frac{3}{64} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}