Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

64+16q+25q^{2}=64+160q+100q^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+10q\right)^{2}.
64+16q+25q^{2}-64=160q+100q^{2}
Subtract 64 from both sides.
16q+25q^{2}=160q+100q^{2}
Subtract 64 from 64 to get 0.
16q+25q^{2}-160q=100q^{2}
Subtract 160q from both sides.
-144q+25q^{2}=100q^{2}
Combine 16q and -160q to get -144q.
-144q+25q^{2}-100q^{2}=0
Subtract 100q^{2} from both sides.
-144q-75q^{2}=0
Combine 25q^{2} and -100q^{2} to get -75q^{2}.
q\left(-144-75q\right)=0
Factor out q.
q=0 q=-\frac{48}{25}
To find equation solutions, solve q=0 and -144-75q=0.
64+16q+25q^{2}=64+160q+100q^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+10q\right)^{2}.
64+16q+25q^{2}-64=160q+100q^{2}
Subtract 64 from both sides.
16q+25q^{2}=160q+100q^{2}
Subtract 64 from 64 to get 0.
16q+25q^{2}-160q=100q^{2}
Subtract 160q from both sides.
-144q+25q^{2}=100q^{2}
Combine 16q and -160q to get -144q.
-144q+25q^{2}-100q^{2}=0
Subtract 100q^{2} from both sides.
-144q-75q^{2}=0
Combine 25q^{2} and -100q^{2} to get -75q^{2}.
-75q^{2}-144q=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}}}{2\left(-75\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -75 for a, -144 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-144\right)±144}{2\left(-75\right)}
Take the square root of \left(-144\right)^{2}.
q=\frac{144±144}{2\left(-75\right)}
The opposite of -144 is 144.
q=\frac{144±144}{-150}
Multiply 2 times -75.
q=\frac{288}{-150}
Now solve the equation q=\frac{144±144}{-150} when ± is plus. Add 144 to 144.
q=-\frac{48}{25}
Reduce the fraction \frac{288}{-150} to lowest terms by extracting and canceling out 6.
q=\frac{0}{-150}
Now solve the equation q=\frac{144±144}{-150} when ± is minus. Subtract 144 from 144.
q=0
Divide 0 by -150.
q=-\frac{48}{25} q=0
The equation is now solved.
64+16q+25q^{2}=64+160q+100q^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+10q\right)^{2}.
64+16q+25q^{2}-160q=64+100q^{2}
Subtract 160q from both sides.
64-144q+25q^{2}=64+100q^{2}
Combine 16q and -160q to get -144q.
64-144q+25q^{2}-100q^{2}=64
Subtract 100q^{2} from both sides.
64-144q-75q^{2}=64
Combine 25q^{2} and -100q^{2} to get -75q^{2}.
-144q-75q^{2}=64-64
Subtract 64 from both sides.
-144q-75q^{2}=0
Subtract 64 from 64 to get 0.
-75q^{2}-144q=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-75q^{2}-144q}{-75}=\frac{0}{-75}
Divide both sides by -75.
q^{2}+\left(-\frac{144}{-75}\right)q=\frac{0}{-75}
Dividing by -75 undoes the multiplication by -75.
q^{2}+\frac{48}{25}q=\frac{0}{-75}
Reduce the fraction \frac{-144}{-75} to lowest terms by extracting and canceling out 3.
q^{2}+\frac{48}{25}q=0
Divide 0 by -75.
q^{2}+\frac{48}{25}q+\left(\frac{24}{25}\right)^{2}=\left(\frac{24}{25}\right)^{2}
Divide \frac{48}{25}, the coefficient of the x term, by 2 to get \frac{24}{25}. Then add the square of \frac{24}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+\frac{48}{25}q+\frac{576}{625}=\frac{576}{625}
Square \frac{24}{25} by squaring both the numerator and the denominator of the fraction.
\left(q+\frac{24}{25}\right)^{2}=\frac{576}{625}
Factor q^{2}+\frac{48}{25}q+\frac{576}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+\frac{24}{25}\right)^{2}}=\sqrt{\frac{576}{625}}
Take the square root of both sides of the equation.
q+\frac{24}{25}=\frac{24}{25} q+\frac{24}{25}=-\frac{24}{25}
Simplify.
q=0 q=-\frac{48}{25}
Subtract \frac{24}{25} from both sides of the equation.