Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

1272=n\left(10+\left(n-1\right)\times 8\right)
Multiply both sides of the equation by 2.
1272=n\left(10+8n-8\right)
Use the distributive property to multiply n-1 by 8.
1272=n\left(2+8n\right)
Subtract 8 from 10 to get 2.
1272=2n+8n^{2}
Use the distributive property to multiply n by 2+8n.
2n+8n^{2}=1272
Swap sides so that all variable terms are on the left hand side.
2n+8n^{2}-1272=0
Subtract 1272 from both sides.
8n^{2}+2n-1272=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-2±\sqrt{2^{2}-4\times 8\left(-1272\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 2 for b, and -1272 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2±\sqrt{4-4\times 8\left(-1272\right)}}{2\times 8}
Square 2.
n=\frac{-2±\sqrt{4-32\left(-1272\right)}}{2\times 8}
Multiply -4 times 8.
n=\frac{-2±\sqrt{4+40704}}{2\times 8}
Multiply -32 times -1272.
n=\frac{-2±\sqrt{40708}}{2\times 8}
Add 4 to 40704.
n=\frac{-2±2\sqrt{10177}}{2\times 8}
Take the square root of 40708.
n=\frac{-2±2\sqrt{10177}}{16}
Multiply 2 times 8.
n=\frac{2\sqrt{10177}-2}{16}
Now solve the equation n=\frac{-2±2\sqrt{10177}}{16} when ± is plus. Add -2 to 2\sqrt{10177}.
n=\frac{\sqrt{10177}-1}{8}
Divide -2+2\sqrt{10177} by 16.
n=\frac{-2\sqrt{10177}-2}{16}
Now solve the equation n=\frac{-2±2\sqrt{10177}}{16} when ± is minus. Subtract 2\sqrt{10177} from -2.
n=\frac{-\sqrt{10177}-1}{8}
Divide -2-2\sqrt{10177} by 16.
n=\frac{\sqrt{10177}-1}{8} n=\frac{-\sqrt{10177}-1}{8}
The equation is now solved.
1272=n\left(10+\left(n-1\right)\times 8\right)
Multiply both sides of the equation by 2.
1272=n\left(10+8n-8\right)
Use the distributive property to multiply n-1 by 8.
1272=n\left(2+8n\right)
Subtract 8 from 10 to get 2.
1272=2n+8n^{2}
Use the distributive property to multiply n by 2+8n.
2n+8n^{2}=1272
Swap sides so that all variable terms are on the left hand side.
8n^{2}+2n=1272
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8n^{2}+2n}{8}=\frac{1272}{8}
Divide both sides by 8.
n^{2}+\frac{2}{8}n=\frac{1272}{8}
Dividing by 8 undoes the multiplication by 8.
n^{2}+\frac{1}{4}n=\frac{1272}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
n^{2}+\frac{1}{4}n=159
Divide 1272 by 8.
n^{2}+\frac{1}{4}n+\left(\frac{1}{8}\right)^{2}=159+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{1}{4}n+\frac{1}{64}=159+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{1}{4}n+\frac{1}{64}=\frac{10177}{64}
Add 159 to \frac{1}{64}.
\left(n+\frac{1}{8}\right)^{2}=\frac{10177}{64}
Factor n^{2}+\frac{1}{4}n+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{8}\right)^{2}}=\sqrt{\frac{10177}{64}}
Take the square root of both sides of the equation.
n+\frac{1}{8}=\frac{\sqrt{10177}}{8} n+\frac{1}{8}=-\frac{\sqrt{10177}}{8}
Simplify.
n=\frac{\sqrt{10177}-1}{8} n=\frac{-\sqrt{10177}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.