Evaluate
\frac{63521}{990}\approx 64.162626263
Factor
\frac{63521}{2 \cdot 3 ^ {2} \cdot 5 \cdot 11} = 64\frac{161}{990} = 64.16262626262626
Share
Copied to clipboard
\begin{array}{l}\phantom{9900)}\phantom{1}\\9900\overline{)635210}\\\end{array}
Use the 1^{st} digit 6 from dividend 635210
\begin{array}{l}\phantom{9900)}0\phantom{2}\\9900\overline{)635210}\\\end{array}
Since 6 is less than 9900, use the next digit 3 from dividend 635210 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}0\phantom{3}\\9900\overline{)635210}\\\end{array}
Use the 2^{nd} digit 3 from dividend 635210
\begin{array}{l}\phantom{9900)}00\phantom{4}\\9900\overline{)635210}\\\end{array}
Since 63 is less than 9900, use the next digit 5 from dividend 635210 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}00\phantom{5}\\9900\overline{)635210}\\\end{array}
Use the 3^{rd} digit 5 from dividend 635210
\begin{array}{l}\phantom{9900)}000\phantom{6}\\9900\overline{)635210}\\\end{array}
Since 635 is less than 9900, use the next digit 2 from dividend 635210 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}000\phantom{7}\\9900\overline{)635210}\\\end{array}
Use the 4^{th} digit 2 from dividend 635210
\begin{array}{l}\phantom{9900)}0000\phantom{8}\\9900\overline{)635210}\\\end{array}
Since 6352 is less than 9900, use the next digit 1 from dividend 635210 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}0000\phantom{9}\\9900\overline{)635210}\\\end{array}
Use the 5^{th} digit 1 from dividend 635210
\begin{array}{l}\phantom{9900)}00006\phantom{10}\\9900\overline{)635210}\\\phantom{9900)}\underline{\phantom{}59400\phantom{9}}\\\phantom{9900)9}4121\\\end{array}
Find closest multiple of 9900 to 63521. We see that 6 \times 9900 = 59400 is the nearest. Now subtract 59400 from 63521 to get reminder 4121. Add 6 to quotient.
\begin{array}{l}\phantom{9900)}00006\phantom{11}\\9900\overline{)635210}\\\phantom{9900)}\underline{\phantom{}59400\phantom{9}}\\\phantom{9900)9}41210\\\end{array}
Use the 6^{th} digit 0 from dividend 635210
\begin{array}{l}\phantom{9900)}000064\phantom{12}\\9900\overline{)635210}\\\phantom{9900)}\underline{\phantom{}59400\phantom{9}}\\\phantom{9900)9}41210\\\phantom{9900)}\underline{\phantom{9}39600\phantom{}}\\\phantom{9900)99}1610\\\end{array}
Find closest multiple of 9900 to 41210. We see that 4 \times 9900 = 39600 is the nearest. Now subtract 39600 from 41210 to get reminder 1610. Add 4 to quotient.
\text{Quotient: }64 \text{Reminder: }1610
Since 1610 is less than 9900, stop the division. The reminder is 1610. The topmost line 000064 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}