Evaluate
\frac{6352}{435}\approx 14.602298851
Factor
\frac{2 ^ {4} \cdot 397}{3 \cdot 5 \cdot 29} = 14\frac{262}{435} = 14.602298850574712
Share
Copied to clipboard
\begin{array}{l}\phantom{435)}\phantom{1}\\435\overline{)6352}\\\end{array}
Use the 1^{st} digit 6 from dividend 6352
\begin{array}{l}\phantom{435)}0\phantom{2}\\435\overline{)6352}\\\end{array}
Since 6 is less than 435, use the next digit 3 from dividend 6352 and add 0 to the quotient
\begin{array}{l}\phantom{435)}0\phantom{3}\\435\overline{)6352}\\\end{array}
Use the 2^{nd} digit 3 from dividend 6352
\begin{array}{l}\phantom{435)}00\phantom{4}\\435\overline{)6352}\\\end{array}
Since 63 is less than 435, use the next digit 5 from dividend 6352 and add 0 to the quotient
\begin{array}{l}\phantom{435)}00\phantom{5}\\435\overline{)6352}\\\end{array}
Use the 3^{rd} digit 5 from dividend 6352
\begin{array}{l}\phantom{435)}001\phantom{6}\\435\overline{)6352}\\\phantom{435)}\underline{\phantom{}435\phantom{9}}\\\phantom{435)}200\\\end{array}
Find closest multiple of 435 to 635. We see that 1 \times 435 = 435 is the nearest. Now subtract 435 from 635 to get reminder 200. Add 1 to quotient.
\begin{array}{l}\phantom{435)}001\phantom{7}\\435\overline{)6352}\\\phantom{435)}\underline{\phantom{}435\phantom{9}}\\\phantom{435)}2002\\\end{array}
Use the 4^{th} digit 2 from dividend 6352
\begin{array}{l}\phantom{435)}0014\phantom{8}\\435\overline{)6352}\\\phantom{435)}\underline{\phantom{}435\phantom{9}}\\\phantom{435)}2002\\\phantom{435)}\underline{\phantom{}1740\phantom{}}\\\phantom{435)9}262\\\end{array}
Find closest multiple of 435 to 2002. We see that 4 \times 435 = 1740 is the nearest. Now subtract 1740 from 2002 to get reminder 262. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }262
Since 262 is less than 435, stop the division. The reminder is 262. The topmost line 0014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}