Evaluate
\frac{2109}{20}=105.45
Factor
\frac{3 \cdot 19 \cdot 37}{2 ^ {2} \cdot 5} = 105\frac{9}{20} = 105.45
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)6327}\\\end{array}
Use the 1^{st} digit 6 from dividend 6327
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)6327}\\\end{array}
Since 6 is less than 60, use the next digit 3 from dividend 6327 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)6327}\\\end{array}
Use the 2^{nd} digit 3 from dividend 6327
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)6327}\\\phantom{60)}\underline{\phantom{}60\phantom{99}}\\\phantom{60)9}3\\\end{array}
Find closest multiple of 60 to 63. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 63 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)6327}\\\phantom{60)}\underline{\phantom{}60\phantom{99}}\\\phantom{60)9}32\\\end{array}
Use the 3^{rd} digit 2 from dividend 6327
\begin{array}{l}\phantom{60)}010\phantom{6}\\60\overline{)6327}\\\phantom{60)}\underline{\phantom{}60\phantom{99}}\\\phantom{60)9}32\\\end{array}
Since 32 is less than 60, use the next digit 7 from dividend 6327 and add 0 to the quotient
\begin{array}{l}\phantom{60)}010\phantom{7}\\60\overline{)6327}\\\phantom{60)}\underline{\phantom{}60\phantom{99}}\\\phantom{60)9}327\\\end{array}
Use the 4^{th} digit 7 from dividend 6327
\begin{array}{l}\phantom{60)}0105\phantom{8}\\60\overline{)6327}\\\phantom{60)}\underline{\phantom{}60\phantom{99}}\\\phantom{60)9}327\\\phantom{60)}\underline{\phantom{9}300\phantom{}}\\\phantom{60)99}27\\\end{array}
Find closest multiple of 60 to 327. We see that 5 \times 60 = 300 is the nearest. Now subtract 300 from 327 to get reminder 27. Add 5 to quotient.
\text{Quotient: }105 \text{Reminder: }27
Since 27 is less than 60, stop the division. The reminder is 27. The topmost line 0105 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}