Solve for x
x = \frac{13 \sqrt{4503} + 1760}{631} \approx 4.171722903
x = \frac{1760 - 13 \sqrt{4503}}{631} \approx 1.406724007
Graph
Share
Copied to clipboard
631x^{2}-3520x+3703=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3520\right)±\sqrt{\left(-3520\right)^{2}-4\times 631\times 3703}}{2\times 631}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 631 for a, -3520 for b, and 3703 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3520\right)±\sqrt{12390400-4\times 631\times 3703}}{2\times 631}
Square -3520.
x=\frac{-\left(-3520\right)±\sqrt{12390400-2524\times 3703}}{2\times 631}
Multiply -4 times 631.
x=\frac{-\left(-3520\right)±\sqrt{12390400-9346372}}{2\times 631}
Multiply -2524 times 3703.
x=\frac{-\left(-3520\right)±\sqrt{3044028}}{2\times 631}
Add 12390400 to -9346372.
x=\frac{-\left(-3520\right)±26\sqrt{4503}}{2\times 631}
Take the square root of 3044028.
x=\frac{3520±26\sqrt{4503}}{2\times 631}
The opposite of -3520 is 3520.
x=\frac{3520±26\sqrt{4503}}{1262}
Multiply 2 times 631.
x=\frac{26\sqrt{4503}+3520}{1262}
Now solve the equation x=\frac{3520±26\sqrt{4503}}{1262} when ± is plus. Add 3520 to 26\sqrt{4503}.
x=\frac{13\sqrt{4503}+1760}{631}
Divide 3520+26\sqrt{4503} by 1262.
x=\frac{3520-26\sqrt{4503}}{1262}
Now solve the equation x=\frac{3520±26\sqrt{4503}}{1262} when ± is minus. Subtract 26\sqrt{4503} from 3520.
x=\frac{1760-13\sqrt{4503}}{631}
Divide 3520-26\sqrt{4503} by 1262.
x=\frac{13\sqrt{4503}+1760}{631} x=\frac{1760-13\sqrt{4503}}{631}
The equation is now solved.
631x^{2}-3520x+3703=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
631x^{2}-3520x+3703-3703=-3703
Subtract 3703 from both sides of the equation.
631x^{2}-3520x=-3703
Subtracting 3703 from itself leaves 0.
\frac{631x^{2}-3520x}{631}=-\frac{3703}{631}
Divide both sides by 631.
x^{2}-\frac{3520}{631}x=-\frac{3703}{631}
Dividing by 631 undoes the multiplication by 631.
x^{2}-\frac{3520}{631}x+\left(-\frac{1760}{631}\right)^{2}=-\frac{3703}{631}+\left(-\frac{1760}{631}\right)^{2}
Divide -\frac{3520}{631}, the coefficient of the x term, by 2 to get -\frac{1760}{631}. Then add the square of -\frac{1760}{631} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3520}{631}x+\frac{3097600}{398161}=-\frac{3703}{631}+\frac{3097600}{398161}
Square -\frac{1760}{631} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3520}{631}x+\frac{3097600}{398161}=\frac{761007}{398161}
Add -\frac{3703}{631} to \frac{3097600}{398161} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1760}{631}\right)^{2}=\frac{761007}{398161}
Factor x^{2}-\frac{3520}{631}x+\frac{3097600}{398161}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1760}{631}\right)^{2}}=\sqrt{\frac{761007}{398161}}
Take the square root of both sides of the equation.
x-\frac{1760}{631}=\frac{13\sqrt{4503}}{631} x-\frac{1760}{631}=-\frac{13\sqrt{4503}}{631}
Simplify.
x=\frac{13\sqrt{4503}+1760}{631} x=\frac{1760-13\sqrt{4503}}{631}
Add \frac{1760}{631} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}