Evaluate
\frac{210225}{76}\approx 2766.118421053
Factor
\frac{3 \cdot 5 ^ {2} \cdot 2803}{2 ^ {2} \cdot 19} = 2766\frac{9}{76} = 2766.1184210526317
Share
Copied to clipboard
\begin{array}{l}\phantom{228)}\phantom{1}\\228\overline{)630675}\\\end{array}
Use the 1^{st} digit 6 from dividend 630675
\begin{array}{l}\phantom{228)}0\phantom{2}\\228\overline{)630675}\\\end{array}
Since 6 is less than 228, use the next digit 3 from dividend 630675 and add 0 to the quotient
\begin{array}{l}\phantom{228)}0\phantom{3}\\228\overline{)630675}\\\end{array}
Use the 2^{nd} digit 3 from dividend 630675
\begin{array}{l}\phantom{228)}00\phantom{4}\\228\overline{)630675}\\\end{array}
Since 63 is less than 228, use the next digit 0 from dividend 630675 and add 0 to the quotient
\begin{array}{l}\phantom{228)}00\phantom{5}\\228\overline{)630675}\\\end{array}
Use the 3^{rd} digit 0 from dividend 630675
\begin{array}{l}\phantom{228)}002\phantom{6}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}174\\\end{array}
Find closest multiple of 228 to 630. We see that 2 \times 228 = 456 is the nearest. Now subtract 456 from 630 to get reminder 174. Add 2 to quotient.
\begin{array}{l}\phantom{228)}002\phantom{7}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\end{array}
Use the 4^{th} digit 6 from dividend 630675
\begin{array}{l}\phantom{228)}0027\phantom{8}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\phantom{228)}\underline{\phantom{}1596\phantom{99}}\\\phantom{228)9}150\\\end{array}
Find closest multiple of 228 to 1746. We see that 7 \times 228 = 1596 is the nearest. Now subtract 1596 from 1746 to get reminder 150. Add 7 to quotient.
\begin{array}{l}\phantom{228)}0027\phantom{9}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\phantom{228)}\underline{\phantom{}1596\phantom{99}}\\\phantom{228)9}1507\\\end{array}
Use the 5^{th} digit 7 from dividend 630675
\begin{array}{l}\phantom{228)}00276\phantom{10}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\phantom{228)}\underline{\phantom{}1596\phantom{99}}\\\phantom{228)9}1507\\\phantom{228)}\underline{\phantom{9}1368\phantom{9}}\\\phantom{228)99}139\\\end{array}
Find closest multiple of 228 to 1507. We see that 6 \times 228 = 1368 is the nearest. Now subtract 1368 from 1507 to get reminder 139. Add 6 to quotient.
\begin{array}{l}\phantom{228)}00276\phantom{11}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\phantom{228)}\underline{\phantom{}1596\phantom{99}}\\\phantom{228)9}1507\\\phantom{228)}\underline{\phantom{9}1368\phantom{9}}\\\phantom{228)99}1395\\\end{array}
Use the 6^{th} digit 5 from dividend 630675
\begin{array}{l}\phantom{228)}002766\phantom{12}\\228\overline{)630675}\\\phantom{228)}\underline{\phantom{}456\phantom{999}}\\\phantom{228)}1746\\\phantom{228)}\underline{\phantom{}1596\phantom{99}}\\\phantom{228)9}1507\\\phantom{228)}\underline{\phantom{9}1368\phantom{9}}\\\phantom{228)99}1395\\\phantom{228)}\underline{\phantom{99}1368\phantom{}}\\\phantom{228)9999}27\\\end{array}
Find closest multiple of 228 to 1395. We see that 6 \times 228 = 1368 is the nearest. Now subtract 1368 from 1395 to get reminder 27. Add 6 to quotient.
\text{Quotient: }2766 \text{Reminder: }27
Since 27 is less than 228, stop the division. The reminder is 27. The topmost line 002766 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2766.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}