Solve for n
n = \frac{\sqrt{6301} - 1}{5} \approx 15.675767698
n=\frac{-\sqrt{6301}-1}{5}\approx -16.075767698
Share
Copied to clipboard
630\times 2=n\left(0+5n+2\right)
Multiply both sides by 2.
1260=n\left(0+5n+2\right)
Multiply 630 and 2 to get 1260.
1260=n\left(2+5n\right)
Add 0 and 2 to get 2.
1260=2n+5n^{2}
Use the distributive property to multiply n by 2+5n.
2n+5n^{2}=1260
Swap sides so that all variable terms are on the left hand side.
2n+5n^{2}-1260=0
Subtract 1260 from both sides.
5n^{2}+2n-1260=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-2±\sqrt{2^{2}-4\times 5\left(-1260\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 2 for b, and -1260 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2±\sqrt{4-4\times 5\left(-1260\right)}}{2\times 5}
Square 2.
n=\frac{-2±\sqrt{4-20\left(-1260\right)}}{2\times 5}
Multiply -4 times 5.
n=\frac{-2±\sqrt{4+25200}}{2\times 5}
Multiply -20 times -1260.
n=\frac{-2±\sqrt{25204}}{2\times 5}
Add 4 to 25200.
n=\frac{-2±2\sqrt{6301}}{2\times 5}
Take the square root of 25204.
n=\frac{-2±2\sqrt{6301}}{10}
Multiply 2 times 5.
n=\frac{2\sqrt{6301}-2}{10}
Now solve the equation n=\frac{-2±2\sqrt{6301}}{10} when ± is plus. Add -2 to 2\sqrt{6301}.
n=\frac{\sqrt{6301}-1}{5}
Divide -2+2\sqrt{6301} by 10.
n=\frac{-2\sqrt{6301}-2}{10}
Now solve the equation n=\frac{-2±2\sqrt{6301}}{10} when ± is minus. Subtract 2\sqrt{6301} from -2.
n=\frac{-\sqrt{6301}-1}{5}
Divide -2-2\sqrt{6301} by 10.
n=\frac{\sqrt{6301}-1}{5} n=\frac{-\sqrt{6301}-1}{5}
The equation is now solved.
630\times 2=n\left(0+5n+2\right)
Multiply both sides by 2.
1260=n\left(0+5n+2\right)
Multiply 630 and 2 to get 1260.
1260=n\left(2+5n\right)
Add 0 and 2 to get 2.
1260=2n+5n^{2}
Use the distributive property to multiply n by 2+5n.
2n+5n^{2}=1260
Swap sides so that all variable terms are on the left hand side.
5n^{2}+2n=1260
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5n^{2}+2n}{5}=\frac{1260}{5}
Divide both sides by 5.
n^{2}+\frac{2}{5}n=\frac{1260}{5}
Dividing by 5 undoes the multiplication by 5.
n^{2}+\frac{2}{5}n=252
Divide 1260 by 5.
n^{2}+\frac{2}{5}n+\left(\frac{1}{5}\right)^{2}=252+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{2}{5}n+\frac{1}{25}=252+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{2}{5}n+\frac{1}{25}=\frac{6301}{25}
Add 252 to \frac{1}{25}.
\left(n+\frac{1}{5}\right)^{2}=\frac{6301}{25}
Factor n^{2}+\frac{2}{5}n+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{5}\right)^{2}}=\sqrt{\frac{6301}{25}}
Take the square root of both sides of the equation.
n+\frac{1}{5}=\frac{\sqrt{6301}}{5} n+\frac{1}{5}=-\frac{\sqrt{6301}}{5}
Simplify.
n=\frac{\sqrt{6301}-1}{5} n=\frac{-\sqrt{6301}-1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}