63.5= \frac{ (63 \times x)+(65.y) }{ 100 }
Solve for x
x=\frac{6350-65y}{63}
Solve for y
y=-\frac{63x}{65}+\frac{1270}{13}
Graph
Share
Copied to clipboard
63.5\times 100=63\times x+65y
Multiply both sides by 100.
6350=63\times x+65y
Multiply 63.5 and 100 to get 6350.
63\times x+65y=6350
Swap sides so that all variable terms are on the left hand side.
63\times x=6350-65y
Subtract 65y from both sides.
63x=6350-65y
The equation is in standard form.
\frac{63x}{63}=\frac{6350-65y}{63}
Divide both sides by 63.
x=\frac{6350-65y}{63}
Dividing by 63 undoes the multiplication by 63.
63.5\times 100=63\times x+65y
Multiply both sides by 100.
6350=63\times x+65y
Multiply 63.5 and 100 to get 6350.
63\times x+65y=6350
Swap sides so that all variable terms are on the left hand side.
65y=6350-63\times x
Subtract 63\times x from both sides.
65y=6350-63x
The equation is in standard form.
\frac{65y}{65}=\frac{6350-63x}{65}
Divide both sides by 65.
y=\frac{6350-63x}{65}
Dividing by 65 undoes the multiplication by 65.
y=-\frac{63x}{65}+\frac{1270}{13}
Divide 6350-63x by 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}