Solve for x (complex solution)
x=\frac{67+\sqrt{11387}i}{126}\approx 0.531746032+0.846903866i
x=\frac{-\sqrt{11387}i+67}{126}\approx 0.531746032-0.846903866i
Graph
Share
Copied to clipboard
63x^{2}-67x+63=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-67\right)±\sqrt{\left(-67\right)^{2}-4\times 63\times 63}}{2\times 63}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 63 for a, -67 for b, and 63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-67\right)±\sqrt{4489-4\times 63\times 63}}{2\times 63}
Square -67.
x=\frac{-\left(-67\right)±\sqrt{4489-252\times 63}}{2\times 63}
Multiply -4 times 63.
x=\frac{-\left(-67\right)±\sqrt{4489-15876}}{2\times 63}
Multiply -252 times 63.
x=\frac{-\left(-67\right)±\sqrt{-11387}}{2\times 63}
Add 4489 to -15876.
x=\frac{-\left(-67\right)±\sqrt{11387}i}{2\times 63}
Take the square root of -11387.
x=\frac{67±\sqrt{11387}i}{2\times 63}
The opposite of -67 is 67.
x=\frac{67±\sqrt{11387}i}{126}
Multiply 2 times 63.
x=\frac{67+\sqrt{11387}i}{126}
Now solve the equation x=\frac{67±\sqrt{11387}i}{126} when ± is plus. Add 67 to i\sqrt{11387}.
x=\frac{-\sqrt{11387}i+67}{126}
Now solve the equation x=\frac{67±\sqrt{11387}i}{126} when ± is minus. Subtract i\sqrt{11387} from 67.
x=\frac{67+\sqrt{11387}i}{126} x=\frac{-\sqrt{11387}i+67}{126}
The equation is now solved.
63x^{2}-67x+63=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
63x^{2}-67x+63-63=-63
Subtract 63 from both sides of the equation.
63x^{2}-67x=-63
Subtracting 63 from itself leaves 0.
\frac{63x^{2}-67x}{63}=-\frac{63}{63}
Divide both sides by 63.
x^{2}-\frac{67}{63}x=-\frac{63}{63}
Dividing by 63 undoes the multiplication by 63.
x^{2}-\frac{67}{63}x=-1
Divide -63 by 63.
x^{2}-\frac{67}{63}x+\left(-\frac{67}{126}\right)^{2}=-1+\left(-\frac{67}{126}\right)^{2}
Divide -\frac{67}{63}, the coefficient of the x term, by 2 to get -\frac{67}{126}. Then add the square of -\frac{67}{126} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{67}{63}x+\frac{4489}{15876}=-1+\frac{4489}{15876}
Square -\frac{67}{126} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{67}{63}x+\frac{4489}{15876}=-\frac{11387}{15876}
Add -1 to \frac{4489}{15876}.
\left(x-\frac{67}{126}\right)^{2}=-\frac{11387}{15876}
Factor x^{2}-\frac{67}{63}x+\frac{4489}{15876}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{67}{126}\right)^{2}}=\sqrt{-\frac{11387}{15876}}
Take the square root of both sides of the equation.
x-\frac{67}{126}=\frac{\sqrt{11387}i}{126} x-\frac{67}{126}=-\frac{\sqrt{11387}i}{126}
Simplify.
x=\frac{67+\sqrt{11387}i}{126} x=\frac{-\sqrt{11387}i+67}{126}
Add \frac{67}{126} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}