Evaluate
3r+\frac{139}{5}
Factor
\frac{15r+139}{5}
Share
Copied to clipboard
\frac{63\times 4}{9}+3r-\frac{2}{5}+\frac{1}{5}
Express 63\times \frac{4}{9} as a single fraction.
\frac{252}{9}+3r-\frac{2}{5}+\frac{1}{5}
Multiply 63 and 4 to get 252.
28+3r-\frac{2}{5}+\frac{1}{5}
Divide 252 by 9 to get 28.
\frac{140}{5}+3r-\frac{2}{5}+\frac{1}{5}
Convert 28 to fraction \frac{140}{5}.
\frac{140-2}{5}+3r+\frac{1}{5}
Since \frac{140}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{138}{5}+3r+\frac{1}{5}
Subtract 2 from 140 to get 138.
\frac{138+1}{5}+3r
Since \frac{138}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{139}{5}+3r
Add 138 and 1 to get 139.
\frac{139+15r}{5}
Factor out \frac{1}{5}.
15r+139
Consider 140+15r-2+1. Multiply and combine like terms.
\frac{15r+139}{5}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}