Evaluate
\frac{6295}{31}\approx 203.064516129
Factor
\frac{5 \cdot 1259}{31} = 203\frac{2}{31} = 203.06451612903226
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)6295}\\\end{array}
Use the 1^{st} digit 6 from dividend 6295
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)6295}\\\end{array}
Since 6 is less than 31, use the next digit 2 from dividend 6295 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)6295}\\\end{array}
Use the 2^{nd} digit 2 from dividend 6295
\begin{array}{l}\phantom{31)}02\phantom{4}\\31\overline{)6295}\\\phantom{31)}\underline{\phantom{}62\phantom{99}}\\\phantom{31)99}0\\\end{array}
Find closest multiple of 31 to 62. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 62 to get reminder 0. Add 2 to quotient.
\begin{array}{l}\phantom{31)}02\phantom{5}\\31\overline{)6295}\\\phantom{31)}\underline{\phantom{}62\phantom{99}}\\\phantom{31)99}9\\\end{array}
Use the 3^{rd} digit 9 from dividend 6295
\begin{array}{l}\phantom{31)}020\phantom{6}\\31\overline{)6295}\\\phantom{31)}\underline{\phantom{}62\phantom{99}}\\\phantom{31)99}9\\\end{array}
Since 9 is less than 31, use the next digit 5 from dividend 6295 and add 0 to the quotient
\begin{array}{l}\phantom{31)}020\phantom{7}\\31\overline{)6295}\\\phantom{31)}\underline{\phantom{}62\phantom{99}}\\\phantom{31)99}95\\\end{array}
Use the 4^{th} digit 5 from dividend 6295
\begin{array}{l}\phantom{31)}0203\phantom{8}\\31\overline{)6295}\\\phantom{31)}\underline{\phantom{}62\phantom{99}}\\\phantom{31)99}95\\\phantom{31)}\underline{\phantom{99}93\phantom{}}\\\phantom{31)999}2\\\end{array}
Find closest multiple of 31 to 95. We see that 3 \times 31 = 93 is the nearest. Now subtract 93 from 95 to get reminder 2. Add 3 to quotient.
\text{Quotient: }203 \text{Reminder: }2
Since 2 is less than 31, stop the division. The reminder is 2. The topmost line 0203 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 203.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}