Evaluate
\frac{1573}{225}\approx 6.991111111
Factor
\frac{11 ^ {2} \cdot 13}{3 ^ {2} \cdot 5 ^ {2}} = 6\frac{223}{225} = 6.9911111111111115
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)6292}\\\end{array}
Use the 1^{st} digit 6 from dividend 6292
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)6292}\\\end{array}
Since 6 is less than 900, use the next digit 2 from dividend 6292 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)6292}\\\end{array}
Use the 2^{nd} digit 2 from dividend 6292
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)6292}\\\end{array}
Since 62 is less than 900, use the next digit 9 from dividend 6292 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)6292}\\\end{array}
Use the 3^{rd} digit 9 from dividend 6292
\begin{array}{l}\phantom{900)}000\phantom{6}\\900\overline{)6292}\\\end{array}
Since 629 is less than 900, use the next digit 2 from dividend 6292 and add 0 to the quotient
\begin{array}{l}\phantom{900)}000\phantom{7}\\900\overline{)6292}\\\end{array}
Use the 4^{th} digit 2 from dividend 6292
\begin{array}{l}\phantom{900)}0006\phantom{8}\\900\overline{)6292}\\\phantom{900)}\underline{\phantom{}5400\phantom{}}\\\phantom{900)9}892\\\end{array}
Find closest multiple of 900 to 6292. We see that 6 \times 900 = 5400 is the nearest. Now subtract 5400 from 6292 to get reminder 892. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }892
Since 892 is less than 900, stop the division. The reminder is 892. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}