Evaluate
\frac{15676767}{4}=3919191.75
Factor
\frac{3 ^ {3} \cdot 19 \cdot 30559}{2 ^ {2}} = 3919191\frac{3}{4} = 3919191.75
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)62707068}\\\end{array}
Use the 1^{st} digit 6 from dividend 62707068
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)62707068}\\\end{array}
Since 6 is less than 16, use the next digit 2 from dividend 62707068 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)62707068}\\\end{array}
Use the 2^{nd} digit 2 from dividend 62707068
\begin{array}{l}\phantom{16)}03\phantom{4}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}14\\\end{array}
Find closest multiple of 16 to 62. We see that 3 \times 16 = 48 is the nearest. Now subtract 48 from 62 to get reminder 14. Add 3 to quotient.
\begin{array}{l}\phantom{16)}03\phantom{5}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\end{array}
Use the 3^{rd} digit 7 from dividend 62707068
\begin{array}{l}\phantom{16)}039\phantom{6}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}3\\\end{array}
Find closest multiple of 16 to 147. We see that 9 \times 16 = 144 is the nearest. Now subtract 144 from 147 to get reminder 3. Add 9 to quotient.
\begin{array}{l}\phantom{16)}039\phantom{7}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\end{array}
Use the 4^{th} digit 0 from dividend 62707068
\begin{array}{l}\phantom{16)}0391\phantom{8}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}14\\\end{array}
Find closest multiple of 16 to 30. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 30 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{16)}0391\phantom{9}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\end{array}
Use the 5^{th} digit 7 from dividend 62707068
\begin{array}{l}\phantom{16)}03919\phantom{10}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}3\\\end{array}
Find closest multiple of 16 to 147. We see that 9 \times 16 = 144 is the nearest. Now subtract 144 from 147 to get reminder 3. Add 9 to quotient.
\begin{array}{l}\phantom{16)}03919\phantom{11}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\end{array}
Use the 6^{th} digit 0 from dividend 62707068
\begin{array}{l}\phantom{16)}039191\phantom{12}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\phantom{16)}\underline{\phantom{9999}16\phantom{99}}\\\phantom{16)9999}14\\\end{array}
Find closest multiple of 16 to 30. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 30 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{16)}039191\phantom{13}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\phantom{16)}\underline{\phantom{9999}16\phantom{99}}\\\phantom{16)9999}146\\\end{array}
Use the 7^{th} digit 6 from dividend 62707068
\begin{array}{l}\phantom{16)}0391919\phantom{14}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\phantom{16)}\underline{\phantom{9999}16\phantom{99}}\\\phantom{16)9999}146\\\phantom{16)}\underline{\phantom{9999}144\phantom{9}}\\\phantom{16)999999}2\\\end{array}
Find closest multiple of 16 to 146. We see that 9 \times 16 = 144 is the nearest. Now subtract 144 from 146 to get reminder 2. Add 9 to quotient.
\begin{array}{l}\phantom{16)}0391919\phantom{15}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\phantom{16)}\underline{\phantom{9999}16\phantom{99}}\\\phantom{16)9999}146\\\phantom{16)}\underline{\phantom{9999}144\phantom{9}}\\\phantom{16)999999}28\\\end{array}
Use the 8^{th} digit 8 from dividend 62707068
\begin{array}{l}\phantom{16)}03919191\phantom{16}\\16\overline{)62707068}\\\phantom{16)}\underline{\phantom{}48\phantom{999999}}\\\phantom{16)}147\\\phantom{16)}\underline{\phantom{}144\phantom{99999}}\\\phantom{16)99}30\\\phantom{16)}\underline{\phantom{99}16\phantom{9999}}\\\phantom{16)99}147\\\phantom{16)}\underline{\phantom{99}144\phantom{999}}\\\phantom{16)9999}30\\\phantom{16)}\underline{\phantom{9999}16\phantom{99}}\\\phantom{16)9999}146\\\phantom{16)}\underline{\phantom{9999}144\phantom{9}}\\\phantom{16)999999}28\\\phantom{16)}\underline{\phantom{999999}16\phantom{}}\\\phantom{16)999999}12\\\end{array}
Find closest multiple of 16 to 28. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 28 to get reminder 12. Add 1 to quotient.
\text{Quotient: }3919191 \text{Reminder: }12
Since 12 is less than 16, stop the division. The reminder is 12. The topmost line 03919191 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3919191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}