Evaluate
\frac{62555}{12}\approx 5212.916666667
Factor
\frac{5 \cdot 12511}{2 ^ {2} \cdot 3} = 5212\frac{11}{12} = 5212.916666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)62555}\\\end{array}
Use the 1^{st} digit 6 from dividend 62555
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)62555}\\\end{array}
Since 6 is less than 12, use the next digit 2 from dividend 62555 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)62555}\\\end{array}
Use the 2^{nd} digit 2 from dividend 62555
\begin{array}{l}\phantom{12)}05\phantom{4}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 62. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 62 to get reminder 2. Add 5 to quotient.
\begin{array}{l}\phantom{12)}05\phantom{5}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\end{array}
Use the 3^{rd} digit 5 from dividend 62555
\begin{array}{l}\phantom{12)}052\phantom{6}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)99}1\\\end{array}
Find closest multiple of 12 to 25. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 25 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{12)}052\phantom{7}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)99}15\\\end{array}
Use the 4^{th} digit 5 from dividend 62555
\begin{array}{l}\phantom{12)}0521\phantom{8}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)99}15\\\phantom{12)}\underline{\phantom{99}12\phantom{9}}\\\phantom{12)999}3\\\end{array}
Find closest multiple of 12 to 15. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 15 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{12)}0521\phantom{9}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)99}15\\\phantom{12)}\underline{\phantom{99}12\phantom{9}}\\\phantom{12)999}35\\\end{array}
Use the 5^{th} digit 5 from dividend 62555
\begin{array}{l}\phantom{12)}05212\phantom{10}\\12\overline{)62555}\\\phantom{12)}\underline{\phantom{}60\phantom{999}}\\\phantom{12)9}25\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)99}15\\\phantom{12)}\underline{\phantom{99}12\phantom{9}}\\\phantom{12)999}35\\\phantom{12)}\underline{\phantom{999}24\phantom{}}\\\phantom{12)999}11\\\end{array}
Find closest multiple of 12 to 35. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 35 to get reminder 11. Add 2 to quotient.
\text{Quotient: }5212 \text{Reminder: }11
Since 11 is less than 12, stop the division. The reminder is 11. The topmost line 05212 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5212.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}