Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(25m^{4}n^{2}-4p^{4}\right)\left(25m^{4}n^{2}+4p^{4}\right)
Rewrite 625m^{8}n^{4}-16p^{8} as \left(25m^{4}n^{2}\right)^{2}-\left(4p^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(25n^{2}m^{4}-4p^{4}\right)\left(25n^{2}m^{4}+4p^{4}\right)
Reorder the terms.
\left(5m^{2}n-2p^{2}\right)\left(5m^{2}n+2p^{2}\right)
Consider 25n^{2}m^{4}-4p^{4}. Rewrite 25n^{2}m^{4}-4p^{4} as \left(5m^{2}n\right)^{2}-\left(2p^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(5nm^{2}-2p^{2}\right)\left(5nm^{2}+2p^{2}\right)
Reorder the terms.
\left(5nm^{2}-2p^{2}\right)\left(5nm^{2}+2p^{2}\right)\left(25n^{2}m^{4}+4p^{4}\right)
Rewrite the complete factored expression.