Factor
\left(5nm^{2}-2p^{2}\right)\left(5nm^{2}+2p^{2}\right)\left(25n^{2}m^{4}+4p^{4}\right)
Evaluate
625n^{4}m^{8}-16p^{8}
Share
Copied to clipboard
\left(25m^{4}n^{2}-4p^{4}\right)\left(25m^{4}n^{2}+4p^{4}\right)
Rewrite 625m^{8}n^{4}-16p^{8} as \left(25m^{4}n^{2}\right)^{2}-\left(4p^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(25n^{2}m^{4}-4p^{4}\right)\left(25n^{2}m^{4}+4p^{4}\right)
Reorder the terms.
\left(5m^{2}n-2p^{2}\right)\left(5m^{2}n+2p^{2}\right)
Consider 25n^{2}m^{4}-4p^{4}. Rewrite 25n^{2}m^{4}-4p^{4} as \left(5m^{2}n\right)^{2}-\left(2p^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(5nm^{2}-2p^{2}\right)\left(5nm^{2}+2p^{2}\right)
Reorder the terms.
\left(5nm^{2}-2p^{2}\right)\left(5nm^{2}+2p^{2}\right)\left(25n^{2}m^{4}+4p^{4}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}