Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

625x^{2}+196x-1054=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-196±\sqrt{196^{2}-4\times 625\left(-1054\right)}}{2\times 625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 625 for a, 196 for b, and -1054 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-196±\sqrt{38416-4\times 625\left(-1054\right)}}{2\times 625}
Square 196.
x=\frac{-196±\sqrt{38416-2500\left(-1054\right)}}{2\times 625}
Multiply -4 times 625.
x=\frac{-196±\sqrt{38416+2635000}}{2\times 625}
Multiply -2500 times -1054.
x=\frac{-196±\sqrt{2673416}}{2\times 625}
Add 38416 to 2635000.
x=\frac{-196±2\sqrt{668354}}{2\times 625}
Take the square root of 2673416.
x=\frac{-196±2\sqrt{668354}}{1250}
Multiply 2 times 625.
x=\frac{2\sqrt{668354}-196}{1250}
Now solve the equation x=\frac{-196±2\sqrt{668354}}{1250} when ± is plus. Add -196 to 2\sqrt{668354}.
x=\frac{\sqrt{668354}-98}{625}
Divide -196+2\sqrt{668354} by 1250.
x=\frac{-2\sqrt{668354}-196}{1250}
Now solve the equation x=\frac{-196±2\sqrt{668354}}{1250} when ± is minus. Subtract 2\sqrt{668354} from -196.
x=\frac{-\sqrt{668354}-98}{625}
Divide -196-2\sqrt{668354} by 1250.
x=\frac{\sqrt{668354}-98}{625} x=\frac{-\sqrt{668354}-98}{625}
The equation is now solved.
625x^{2}+196x-1054=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
625x^{2}+196x-1054-\left(-1054\right)=-\left(-1054\right)
Add 1054 to both sides of the equation.
625x^{2}+196x=-\left(-1054\right)
Subtracting -1054 from itself leaves 0.
625x^{2}+196x=1054
Subtract -1054 from 0.
\frac{625x^{2}+196x}{625}=\frac{1054}{625}
Divide both sides by 625.
x^{2}+\frac{196}{625}x=\frac{1054}{625}
Dividing by 625 undoes the multiplication by 625.
x^{2}+\frac{196}{625}x+\left(\frac{98}{625}\right)^{2}=\frac{1054}{625}+\left(\frac{98}{625}\right)^{2}
Divide \frac{196}{625}, the coefficient of the x term, by 2 to get \frac{98}{625}. Then add the square of \frac{98}{625} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{196}{625}x+\frac{9604}{390625}=\frac{1054}{625}+\frac{9604}{390625}
Square \frac{98}{625} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{196}{625}x+\frac{9604}{390625}=\frac{668354}{390625}
Add \frac{1054}{625} to \frac{9604}{390625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{98}{625}\right)^{2}=\frac{668354}{390625}
Factor x^{2}+\frac{196}{625}x+\frac{9604}{390625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{98}{625}\right)^{2}}=\sqrt{\frac{668354}{390625}}
Take the square root of both sides of the equation.
x+\frac{98}{625}=\frac{\sqrt{668354}}{625} x+\frac{98}{625}=-\frac{\sqrt{668354}}{625}
Simplify.
x=\frac{\sqrt{668354}-98}{625} x=\frac{-\sqrt{668354}-98}{625}
Subtract \frac{98}{625} from both sides of the equation.