Evaluate
\frac{625}{28}\approx 22.321428571
Factor
\frac{5 ^ {4}}{2 ^ {2} \cdot 7} = 22\frac{9}{28} = 22.321428571428573
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)625}\\\end{array}
Use the 1^{st} digit 6 from dividend 625
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)625}\\\end{array}
Since 6 is less than 28, use the next digit 2 from dividend 625 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)625}\\\end{array}
Use the 2^{nd} digit 2 from dividend 625
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)625}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}6\\\end{array}
Find closest multiple of 28 to 62. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 62 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)625}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}65\\\end{array}
Use the 3^{rd} digit 5 from dividend 625
\begin{array}{l}\phantom{28)}022\phantom{6}\\28\overline{)625}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}65\\\phantom{28)}\underline{\phantom{9}56\phantom{}}\\\phantom{28)99}9\\\end{array}
Find closest multiple of 28 to 65. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 65 to get reminder 9. Add 2 to quotient.
\text{Quotient: }22 \text{Reminder: }9
Since 9 is less than 28, stop the division. The reminder is 9. The topmost line 022 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}