Evaluate
\frac{623}{541}\approx 1.151571165
Factor
\frac{7 \cdot 89}{541} = 1\frac{82}{541} = 1.1515711645101663
Share
Copied to clipboard
\begin{array}{l}\phantom{541)}\phantom{1}\\541\overline{)623}\\\end{array}
Use the 1^{st} digit 6 from dividend 623
\begin{array}{l}\phantom{541)}0\phantom{2}\\541\overline{)623}\\\end{array}
Since 6 is less than 541, use the next digit 2 from dividend 623 and add 0 to the quotient
\begin{array}{l}\phantom{541)}0\phantom{3}\\541\overline{)623}\\\end{array}
Use the 2^{nd} digit 2 from dividend 623
\begin{array}{l}\phantom{541)}00\phantom{4}\\541\overline{)623}\\\end{array}
Since 62 is less than 541, use the next digit 3 from dividend 623 and add 0 to the quotient
\begin{array}{l}\phantom{541)}00\phantom{5}\\541\overline{)623}\\\end{array}
Use the 3^{rd} digit 3 from dividend 623
\begin{array}{l}\phantom{541)}001\phantom{6}\\541\overline{)623}\\\phantom{541)}\underline{\phantom{}541\phantom{}}\\\phantom{541)9}82\\\end{array}
Find closest multiple of 541 to 623. We see that 1 \times 541 = 541 is the nearest. Now subtract 541 from 623 to get reminder 82. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }82
Since 82 is less than 541, stop the division. The reminder is 82. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}