Evaluate
\frac{31}{18}\approx 1.722222222
Factor
\frac{31}{2 \cdot 3 ^ {2}} = 1\frac{13}{18} = 1.7222222222222223
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)620}\\\end{array}
Use the 1^{st} digit 6 from dividend 620
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)620}\\\end{array}
Since 6 is less than 360, use the next digit 2 from dividend 620 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)620}\\\end{array}
Use the 2^{nd} digit 2 from dividend 620
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)620}\\\end{array}
Since 62 is less than 360, use the next digit 0 from dividend 620 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)620}\\\end{array}
Use the 3^{rd} digit 0 from dividend 620
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)620}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)}260\\\end{array}
Find closest multiple of 360 to 620. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 620 to get reminder 260. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }260
Since 260 is less than 360, stop the division. The reminder is 260. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}