Evaluate
\frac{62}{29}\approx 2.137931034
Factor
\frac{2 \cdot 31}{29} = 2\frac{4}{29} = 2.1379310344827585
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)62}\\\end{array}
Use the 1^{st} digit 6 from dividend 62
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)62}\\\end{array}
Since 6 is less than 29, use the next digit 2 from dividend 62 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)62}\\\end{array}
Use the 2^{nd} digit 2 from dividend 62
\begin{array}{l}\phantom{29)}02\phantom{4}\\29\overline{)62}\\\phantom{29)}\underline{\phantom{}58\phantom{}}\\\phantom{29)9}4\\\end{array}
Find closest multiple of 29 to 62. We see that 2 \times 29 = 58 is the nearest. Now subtract 58 from 62 to get reminder 4. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }4
Since 4 is less than 29, stop the division. The reminder is 4. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}