Evaluate
\frac{62}{25}=2.48
Factor
\frac{2 \cdot 31}{5 ^ {2}} = 2\frac{12}{25} = 2.48
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)62}\\\end{array}
Use the 1^{st} digit 6 from dividend 62
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)62}\\\end{array}
Since 6 is less than 25, use the next digit 2 from dividend 62 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)62}\\\end{array}
Use the 2^{nd} digit 2 from dividend 62
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)62}\\\phantom{25)}\underline{\phantom{}50\phantom{}}\\\phantom{25)}12\\\end{array}
Find closest multiple of 25 to 62. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 62 to get reminder 12. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }12
Since 12 is less than 25, stop the division. The reminder is 12. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}