Evaluate
\frac{515}{99}\approx 5.202020202
Factor
\frac{5 \cdot 103}{3 ^ {2} \cdot 11} = 5\frac{20}{99} = 5.202020202020202
Share
Copied to clipboard
\begin{array}{l}\phantom{1188)}\phantom{1}\\1188\overline{)6180}\\\end{array}
Use the 1^{st} digit 6 from dividend 6180
\begin{array}{l}\phantom{1188)}0\phantom{2}\\1188\overline{)6180}\\\end{array}
Since 6 is less than 1188, use the next digit 1 from dividend 6180 and add 0 to the quotient
\begin{array}{l}\phantom{1188)}0\phantom{3}\\1188\overline{)6180}\\\end{array}
Use the 2^{nd} digit 1 from dividend 6180
\begin{array}{l}\phantom{1188)}00\phantom{4}\\1188\overline{)6180}\\\end{array}
Since 61 is less than 1188, use the next digit 8 from dividend 6180 and add 0 to the quotient
\begin{array}{l}\phantom{1188)}00\phantom{5}\\1188\overline{)6180}\\\end{array}
Use the 3^{rd} digit 8 from dividend 6180
\begin{array}{l}\phantom{1188)}000\phantom{6}\\1188\overline{)6180}\\\end{array}
Since 618 is less than 1188, use the next digit 0 from dividend 6180 and add 0 to the quotient
\begin{array}{l}\phantom{1188)}000\phantom{7}\\1188\overline{)6180}\\\end{array}
Use the 4^{th} digit 0 from dividend 6180
\begin{array}{l}\phantom{1188)}0005\phantom{8}\\1188\overline{)6180}\\\phantom{1188)}\underline{\phantom{}5940\phantom{}}\\\phantom{1188)9}240\\\end{array}
Find closest multiple of 1188 to 6180. We see that 5 \times 1188 = 5940 is the nearest. Now subtract 5940 from 6180 to get reminder 240. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }240
Since 240 is less than 1188, stop the division. The reminder is 240. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}