Solve for n
n=\frac{-\sqrt{123719}i+61}{6}\approx 10.166666667-58.622852958i
n=\frac{61+\sqrt{123719}i}{6}\approx 10.166666667+58.622852958i
Share
Copied to clipboard
-3n^{2}+61n=10620
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3n^{2}+61n-10620=10620-10620
Subtract 10620 from both sides of the equation.
-3n^{2}+61n-10620=0
Subtracting 10620 from itself leaves 0.
n=\frac{-61±\sqrt{61^{2}-4\left(-3\right)\left(-10620\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 61 for b, and -10620 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-61±\sqrt{3721-4\left(-3\right)\left(-10620\right)}}{2\left(-3\right)}
Square 61.
n=\frac{-61±\sqrt{3721+12\left(-10620\right)}}{2\left(-3\right)}
Multiply -4 times -3.
n=\frac{-61±\sqrt{3721-127440}}{2\left(-3\right)}
Multiply 12 times -10620.
n=\frac{-61±\sqrt{-123719}}{2\left(-3\right)}
Add 3721 to -127440.
n=\frac{-61±\sqrt{123719}i}{2\left(-3\right)}
Take the square root of -123719.
n=\frac{-61±\sqrt{123719}i}{-6}
Multiply 2 times -3.
n=\frac{-61+\sqrt{123719}i}{-6}
Now solve the equation n=\frac{-61±\sqrt{123719}i}{-6} when ± is plus. Add -61 to i\sqrt{123719}.
n=\frac{-\sqrt{123719}i+61}{6}
Divide -61+i\sqrt{123719} by -6.
n=\frac{-\sqrt{123719}i-61}{-6}
Now solve the equation n=\frac{-61±\sqrt{123719}i}{-6} when ± is minus. Subtract i\sqrt{123719} from -61.
n=\frac{61+\sqrt{123719}i}{6}
Divide -61-i\sqrt{123719} by -6.
n=\frac{-\sqrt{123719}i+61}{6} n=\frac{61+\sqrt{123719}i}{6}
The equation is now solved.
-3n^{2}+61n=10620
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3n^{2}+61n}{-3}=\frac{10620}{-3}
Divide both sides by -3.
n^{2}+\frac{61}{-3}n=\frac{10620}{-3}
Dividing by -3 undoes the multiplication by -3.
n^{2}-\frac{61}{3}n=\frac{10620}{-3}
Divide 61 by -3.
n^{2}-\frac{61}{3}n=-3540
Divide 10620 by -3.
n^{2}-\frac{61}{3}n+\left(-\frac{61}{6}\right)^{2}=-3540+\left(-\frac{61}{6}\right)^{2}
Divide -\frac{61}{3}, the coefficient of the x term, by 2 to get -\frac{61}{6}. Then add the square of -\frac{61}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{61}{3}n+\frac{3721}{36}=-3540+\frac{3721}{36}
Square -\frac{61}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{61}{3}n+\frac{3721}{36}=-\frac{123719}{36}
Add -3540 to \frac{3721}{36}.
\left(n-\frac{61}{6}\right)^{2}=-\frac{123719}{36}
Factor n^{2}-\frac{61}{3}n+\frac{3721}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{61}{6}\right)^{2}}=\sqrt{-\frac{123719}{36}}
Take the square root of both sides of the equation.
n-\frac{61}{6}=\frac{\sqrt{123719}i}{6} n-\frac{61}{6}=-\frac{\sqrt{123719}i}{6}
Simplify.
n=\frac{61+\sqrt{123719}i}{6} n=\frac{-\sqrt{123719}i+61}{6}
Add \frac{61}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}