Evaluate
\frac{61}{50}=1.22
Factor
\frac{61}{2 \cdot 5 ^ {2}} = 1\frac{11}{50} = 1.22
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)61}\\\end{array}
Use the 1^{st} digit 6 from dividend 61
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)61}\\\end{array}
Since 6 is less than 50, use the next digit 1 from dividend 61 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)61}\\\end{array}
Use the 2^{nd} digit 1 from dividend 61
\begin{array}{l}\phantom{50)}01\phantom{4}\\50\overline{)61}\\\phantom{50)}\underline{\phantom{}50\phantom{}}\\\phantom{50)}11\\\end{array}
Find closest multiple of 50 to 61. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 61 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 50, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}