Evaluate
\frac{608}{75}\approx 8.106666667
Factor
\frac{2 ^ {5} \cdot 19}{3 \cdot 5 ^ {2}} = 8\frac{8}{75} = 8.106666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)608}\\\end{array}
Use the 1^{st} digit 6 from dividend 608
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)608}\\\end{array}
Since 6 is less than 75, use the next digit 0 from dividend 608 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)608}\\\end{array}
Use the 2^{nd} digit 0 from dividend 608
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)608}\\\end{array}
Since 60 is less than 75, use the next digit 8 from dividend 608 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)608}\\\end{array}
Use the 3^{rd} digit 8 from dividend 608
\begin{array}{l}\phantom{75)}008\phantom{6}\\75\overline{)608}\\\phantom{75)}\underline{\phantom{}600\phantom{}}\\\phantom{75)99}8\\\end{array}
Find closest multiple of 75 to 608. We see that 8 \times 75 = 600 is the nearest. Now subtract 600 from 608 to get reminder 8. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }8
Since 8 is less than 75, stop the division. The reminder is 8. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}