Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(\frac{y+2}{2})}-\frac{\log_{\frac{y+2}{2}}\left(\frac{2500}{101}\right)}{2}
n_{1}\in \mathrm{Z}
y\neq 0\text{ and }y\neq -2
Solve for y (complex solution)
y=2\left(e^{\frac{\pi n_{1}\left(-Im(x)-iRe(x)\right)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times 50^{\frac{-Re(x)+iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times 101^{\frac{Re(x)-iIm(x)}{2\left(\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\right)}}-1\right)
n_{1}\in \mathrm{Z}
\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{\log_{\frac{y+2}{2}}\left(\frac{101}{2500}\right)}{2}\text{, }&y\neq 0\text{ and }y>-2\\x=\frac{\log_{-\frac{y+2}{2}}\left(\frac{101}{2500}\right)}{2}\text{, }&y\neq -4\text{ and }Numerator(\frac{\ln(\frac{101}{2500})}{2\ln(-\left(\frac{y}{2}+1\right))})\text{bmod}2=1\text{ and }Denominator(\frac{\ln(\frac{101}{2500})}{2\ln(-\left(\frac{y}{2}+1\right))})\text{bmod}2=1\text{ and }y<-2\text{ and }Denominator(\frac{\ln(\frac{101}{2500})}{\ln(-\left(\frac{y}{2}+1\right))})\text{bmod}2=1\text{ and }\left(|\frac{y}{2}+1|\right)^{\frac{\ln(\frac{101}{2500})}{2\ln(-\left(\frac{y}{2}+1\right))}}=\frac{\sqrt{101}}{50}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=2\times \left(\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}-2\text{, }&x\neq 0\\y=-2\times \left(\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}-2\text{, }&x\neq 0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\\y=-2\left(-\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}-2\text{, }&Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}\neq 0\\y=2\left(-\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}-2\text{, }&Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-\frac{\sqrt{101}}{50}\right)^{\frac{1}{x}}\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}