Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{606}{15000}=\left(1+\frac{y}{2}\right)^{2}
Divide both sides by 15000.
\frac{101}{2500}=\left(1+\frac{y}{2}\right)^{2}
Reduce the fraction \frac{606}{15000} to lowest terms by extracting and canceling out 6.
\frac{101}{2500}=1+2\times \frac{y}{2}+\left(\frac{y}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{y}{2}\right)^{2}.
\frac{101}{2500}=1+\frac{2y}{2}+\left(\frac{y}{2}\right)^{2}
Express 2\times \frac{y}{2} as a single fraction.
\frac{101}{2500}=1+y+\left(\frac{y}{2}\right)^{2}
Cancel out 2 and 2.
\frac{101}{2500}=1+y+\frac{y^{2}}{2^{2}}
To raise \frac{y}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{101}{2500}=\frac{\left(1+y\right)\times 2^{2}}{2^{2}}+\frac{y^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+y times \frac{2^{2}}{2^{2}}.
\frac{101}{2500}=\frac{\left(1+y\right)\times 2^{2}+y^{2}}{2^{2}}
Since \frac{\left(1+y\right)\times 2^{2}}{2^{2}} and \frac{y^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{101}{2500}=\frac{4+4y+y^{2}}{2^{2}}
Do the multiplications in \left(1+y\right)\times 2^{2}+y^{2}.
\frac{101}{2500}=\frac{4+4y+y^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{101}{2500}=1+y+\frac{1}{4}y^{2}
Divide each term of 4+4y+y^{2} by 4 to get 1+y+\frac{1}{4}y^{2}.
1+y+\frac{1}{4}y^{2}=\frac{101}{2500}
Swap sides so that all variable terms are on the left hand side.
1+y+\frac{1}{4}y^{2}-\frac{101}{2500}=0
Subtract \frac{101}{2500} from both sides.
\frac{2399}{2500}+y+\frac{1}{4}y^{2}=0
Subtract \frac{101}{2500} from 1 to get \frac{2399}{2500}.
\frac{1}{4}y^{2}+y+\frac{2399}{2500}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{4}\times \frac{2399}{2500}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 1 for b, and \frac{2399}{2500} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times \frac{1}{4}\times \frac{2399}{2500}}}{2\times \frac{1}{4}}
Square 1.
y=\frac{-1±\sqrt{1-\frac{2399}{2500}}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
y=\frac{-1±\sqrt{\frac{101}{2500}}}{2\times \frac{1}{4}}
Add 1 to -\frac{2399}{2500}.
y=\frac{-1±\frac{\sqrt{101}}{50}}{2\times \frac{1}{4}}
Take the square root of \frac{101}{2500}.
y=\frac{-1±\frac{\sqrt{101}}{50}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
y=\frac{\frac{\sqrt{101}}{50}-1}{\frac{1}{2}}
Now solve the equation y=\frac{-1±\frac{\sqrt{101}}{50}}{\frac{1}{2}} when ± is plus. Add -1 to \frac{\sqrt{101}}{50}.
y=\frac{\sqrt{101}}{25}-2
Divide -1+\frac{\sqrt{101}}{50} by \frac{1}{2} by multiplying -1+\frac{\sqrt{101}}{50} by the reciprocal of \frac{1}{2}.
y=\frac{-\frac{\sqrt{101}}{50}-1}{\frac{1}{2}}
Now solve the equation y=\frac{-1±\frac{\sqrt{101}}{50}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{101}}{50} from -1.
y=-\frac{\sqrt{101}}{25}-2
Divide -1-\frac{\sqrt{101}}{50} by \frac{1}{2} by multiplying -1-\frac{\sqrt{101}}{50} by the reciprocal of \frac{1}{2}.
y=\frac{\sqrt{101}}{25}-2 y=-\frac{\sqrt{101}}{25}-2
The equation is now solved.
\frac{606}{15000}=\left(1+\frac{y}{2}\right)^{2}
Divide both sides by 15000.
\frac{101}{2500}=\left(1+\frac{y}{2}\right)^{2}
Reduce the fraction \frac{606}{15000} to lowest terms by extracting and canceling out 6.
\frac{101}{2500}=1+2\times \frac{y}{2}+\left(\frac{y}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{y}{2}\right)^{2}.
\frac{101}{2500}=1+\frac{2y}{2}+\left(\frac{y}{2}\right)^{2}
Express 2\times \frac{y}{2} as a single fraction.
\frac{101}{2500}=1+y+\left(\frac{y}{2}\right)^{2}
Cancel out 2 and 2.
\frac{101}{2500}=1+y+\frac{y^{2}}{2^{2}}
To raise \frac{y}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{101}{2500}=\frac{\left(1+y\right)\times 2^{2}}{2^{2}}+\frac{y^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+y times \frac{2^{2}}{2^{2}}.
\frac{101}{2500}=\frac{\left(1+y\right)\times 2^{2}+y^{2}}{2^{2}}
Since \frac{\left(1+y\right)\times 2^{2}}{2^{2}} and \frac{y^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{101}{2500}=\frac{4+4y+y^{2}}{2^{2}}
Do the multiplications in \left(1+y\right)\times 2^{2}+y^{2}.
\frac{101}{2500}=\frac{4+4y+y^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{101}{2500}=1+y+\frac{1}{4}y^{2}
Divide each term of 4+4y+y^{2} by 4 to get 1+y+\frac{1}{4}y^{2}.
1+y+\frac{1}{4}y^{2}=\frac{101}{2500}
Swap sides so that all variable terms are on the left hand side.
y+\frac{1}{4}y^{2}=\frac{101}{2500}-1
Subtract 1 from both sides.
y+\frac{1}{4}y^{2}=-\frac{2399}{2500}
Subtract 1 from \frac{101}{2500} to get -\frac{2399}{2500}.
\frac{1}{4}y^{2}+y=-\frac{2399}{2500}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}y^{2}+y}{\frac{1}{4}}=-\frac{\frac{2399}{2500}}{\frac{1}{4}}
Multiply both sides by 4.
y^{2}+\frac{1}{\frac{1}{4}}y=-\frac{\frac{2399}{2500}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
y^{2}+4y=-\frac{\frac{2399}{2500}}{\frac{1}{4}}
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
y^{2}+4y=-\frac{2399}{625}
Divide -\frac{2399}{2500} by \frac{1}{4} by multiplying -\frac{2399}{2500} by the reciprocal of \frac{1}{4}.
y^{2}+4y+2^{2}=-\frac{2399}{625}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+4y+4=-\frac{2399}{625}+4
Square 2.
y^{2}+4y+4=\frac{101}{625}
Add -\frac{2399}{625} to 4.
\left(y+2\right)^{2}=\frac{101}{625}
Factor y^{2}+4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+2\right)^{2}}=\sqrt{\frac{101}{625}}
Take the square root of both sides of the equation.
y+2=\frac{\sqrt{101}}{25} y+2=-\frac{\sqrt{101}}{25}
Simplify.
y=\frac{\sqrt{101}}{25}-2 y=-\frac{\sqrt{101}}{25}-2
Subtract 2 from both sides of the equation.