Evaluate
\frac{605}{28}\approx 21.607142857
Factor
\frac{5 \cdot 11 ^ {2}}{2 ^ {2} \cdot 7} = 21\frac{17}{28} = 21.607142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)605}\\\end{array}
Use the 1^{st} digit 6 from dividend 605
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)605}\\\end{array}
Since 6 is less than 28, use the next digit 0 from dividend 605 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)605}\\\end{array}
Use the 2^{nd} digit 0 from dividend 605
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)605}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}4\\\end{array}
Find closest multiple of 28 to 60. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 60 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)605}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}45\\\end{array}
Use the 3^{rd} digit 5 from dividend 605
\begin{array}{l}\phantom{28)}021\phantom{6}\\28\overline{)605}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}45\\\phantom{28)}\underline{\phantom{9}28\phantom{}}\\\phantom{28)9}17\\\end{array}
Find closest multiple of 28 to 45. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 45 to get reminder 17. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }17
Since 17 is less than 28, stop the division. The reminder is 17. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}