Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{672)}\phantom{1}\\672\overline{)6048}\\\end{array}
Use the 1^{st} digit 6 from dividend 6048
\begin{array}{l}\phantom{672)}0\phantom{2}\\672\overline{)6048}\\\end{array}
Since 6 is less than 672, use the next digit 0 from dividend 6048 and add 0 to the quotient
\begin{array}{l}\phantom{672)}0\phantom{3}\\672\overline{)6048}\\\end{array}
Use the 2^{nd} digit 0 from dividend 6048
\begin{array}{l}\phantom{672)}00\phantom{4}\\672\overline{)6048}\\\end{array}
Since 60 is less than 672, use the next digit 4 from dividend 6048 and add 0 to the quotient
\begin{array}{l}\phantom{672)}00\phantom{5}\\672\overline{)6048}\\\end{array}
Use the 3^{rd} digit 4 from dividend 6048
\begin{array}{l}\phantom{672)}000\phantom{6}\\672\overline{)6048}\\\end{array}
Since 604 is less than 672, use the next digit 8 from dividend 6048 and add 0 to the quotient
\begin{array}{l}\phantom{672)}000\phantom{7}\\672\overline{)6048}\\\end{array}
Use the 4^{th} digit 8 from dividend 6048
\begin{array}{l}\phantom{672)}0009\phantom{8}\\672\overline{)6048}\\\phantom{672)}\underline{\phantom{}6048\phantom{}}\\\phantom{672)9999}0\\\end{array}
Find closest multiple of 672 to 6048. We see that 9 \times 672 = 6048 is the nearest. Now subtract 6048 from 6048 to get reminder 0. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }0
Since 0 is less than 672, stop the division. The reminder is 0. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}