Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)600000}\\\end{array}
Use the 1^{st} digit 6 from dividend 600000
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)600000}\\\end{array}
Since 6 is less than 13, use the next digit 0 from dividend 600000 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)600000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600000
\begin{array}{l}\phantom{13)}04\phantom{4}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}8\\\end{array}
Find closest multiple of 13 to 60. We see that 4 \times 13 = 52 is the nearest. Now subtract 52 from 60 to get reminder 8. Add 4 to quotient.
\begin{array}{l}\phantom{13)}04\phantom{5}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 600000
\begin{array}{l}\phantom{13)}046\phantom{6}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}2\\\end{array}
Find closest multiple of 13 to 80. We see that 6 \times 13 = 78 is the nearest. Now subtract 78 from 80 to get reminder 2. Add 6 to quotient.
\begin{array}{l}\phantom{13)}046\phantom{7}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\end{array}
Use the 4^{th} digit 0 from dividend 600000
\begin{array}{l}\phantom{13)}0461\phantom{8}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\phantom{13)}\underline{\phantom{99}13\phantom{99}}\\\phantom{13)999}7\\\end{array}
Find closest multiple of 13 to 20. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 20 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{13)}0461\phantom{9}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\phantom{13)}\underline{\phantom{99}13\phantom{99}}\\\phantom{13)999}70\\\end{array}
Use the 5^{th} digit 0 from dividend 600000
\begin{array}{l}\phantom{13)}04615\phantom{10}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\phantom{13)}\underline{\phantom{99}13\phantom{99}}\\\phantom{13)999}70\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}5\\\end{array}
Find closest multiple of 13 to 70. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 70 to get reminder 5. Add 5 to quotient.
\begin{array}{l}\phantom{13)}04615\phantom{11}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\phantom{13)}\underline{\phantom{99}13\phantom{99}}\\\phantom{13)999}70\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}50\\\end{array}
Use the 6^{th} digit 0 from dividend 600000
\begin{array}{l}\phantom{13)}046153\phantom{12}\\13\overline{)600000}\\\phantom{13)}\underline{\phantom{}52\phantom{9999}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{999}}\\\phantom{13)99}20\\\phantom{13)}\underline{\phantom{99}13\phantom{99}}\\\phantom{13)999}70\\\phantom{13)}\underline{\phantom{999}65\phantom{9}}\\\phantom{13)9999}50\\\phantom{13)}\underline{\phantom{9999}39\phantom{}}\\\phantom{13)9999}11\\\end{array}
Find closest multiple of 13 to 50. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 50 to get reminder 11. Add 3 to quotient.
\text{Quotient: }46153 \text{Reminder: }11
Since 11 is less than 13, stop the division. The reminder is 11. The topmost line 046153 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 46153.