Solve for x
x=\frac{1}{10}=0.1
x = \frac{19}{10} = 1\frac{9}{10} = 1.9
Graph
Share
Copied to clipboard
6000\left(1-x\right)^{2}=4860
Multiply 1-x and 1-x to get \left(1-x\right)^{2}.
6000\left(1-2x+x^{2}\right)=4860
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
6000-12000x+6000x^{2}=4860
Use the distributive property to multiply 6000 by 1-2x+x^{2}.
6000-12000x+6000x^{2}-4860=0
Subtract 4860 from both sides.
1140-12000x+6000x^{2}=0
Subtract 4860 from 6000 to get 1140.
6000x^{2}-12000x+1140=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12000\right)±\sqrt{\left(-12000\right)^{2}-4\times 6000\times 1140}}{2\times 6000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6000 for a, -12000 for b, and 1140 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12000\right)±\sqrt{144000000-4\times 6000\times 1140}}{2\times 6000}
Square -12000.
x=\frac{-\left(-12000\right)±\sqrt{144000000-24000\times 1140}}{2\times 6000}
Multiply -4 times 6000.
x=\frac{-\left(-12000\right)±\sqrt{144000000-27360000}}{2\times 6000}
Multiply -24000 times 1140.
x=\frac{-\left(-12000\right)±\sqrt{116640000}}{2\times 6000}
Add 144000000 to -27360000.
x=\frac{-\left(-12000\right)±10800}{2\times 6000}
Take the square root of 116640000.
x=\frac{12000±10800}{2\times 6000}
The opposite of -12000 is 12000.
x=\frac{12000±10800}{12000}
Multiply 2 times 6000.
x=\frac{22800}{12000}
Now solve the equation x=\frac{12000±10800}{12000} when ± is plus. Add 12000 to 10800.
x=\frac{19}{10}
Reduce the fraction \frac{22800}{12000} to lowest terms by extracting and canceling out 1200.
x=\frac{1200}{12000}
Now solve the equation x=\frac{12000±10800}{12000} when ± is minus. Subtract 10800 from 12000.
x=\frac{1}{10}
Reduce the fraction \frac{1200}{12000} to lowest terms by extracting and canceling out 1200.
x=\frac{19}{10} x=\frac{1}{10}
The equation is now solved.
6000\left(1-x\right)^{2}=4860
Multiply 1-x and 1-x to get \left(1-x\right)^{2}.
6000\left(1-2x+x^{2}\right)=4860
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
6000-12000x+6000x^{2}=4860
Use the distributive property to multiply 6000 by 1-2x+x^{2}.
-12000x+6000x^{2}=4860-6000
Subtract 6000 from both sides.
-12000x+6000x^{2}=-1140
Subtract 6000 from 4860 to get -1140.
6000x^{2}-12000x=-1140
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6000x^{2}-12000x}{6000}=-\frac{1140}{6000}
Divide both sides by 6000.
x^{2}+\left(-\frac{12000}{6000}\right)x=-\frac{1140}{6000}
Dividing by 6000 undoes the multiplication by 6000.
x^{2}-2x=-\frac{1140}{6000}
Divide -12000 by 6000.
x^{2}-2x=-\frac{19}{100}
Reduce the fraction \frac{-1140}{6000} to lowest terms by extracting and canceling out 60.
x^{2}-2x+1=-\frac{19}{100}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{81}{100}
Add -\frac{19}{100} to 1.
\left(x-1\right)^{2}=\frac{81}{100}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
x-1=\frac{9}{10} x-1=-\frac{9}{10}
Simplify.
x=\frac{19}{10} x=\frac{1}{10}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}