6000+75 \% (x-1) < 80 \% x
Solve for x
x>119985
Graph
Share
Copied to clipboard
6000+\frac{3}{4}\left(x-1\right)<\frac{80}{100}x
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
6000+\frac{3}{4}x+\frac{3}{4}\left(-1\right)<\frac{80}{100}x
Use the distributive property to multiply \frac{3}{4} by x-1.
6000+\frac{3}{4}x-\frac{3}{4}<\frac{80}{100}x
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{24000}{4}+\frac{3}{4}x-\frac{3}{4}<\frac{80}{100}x
Convert 6000 to fraction \frac{24000}{4}.
\frac{24000-3}{4}+\frac{3}{4}x<\frac{80}{100}x
Since \frac{24000}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{23997}{4}+\frac{3}{4}x<\frac{80}{100}x
Subtract 3 from 24000 to get 23997.
\frac{23997}{4}+\frac{3}{4}x<\frac{4}{5}x
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{23997}{4}+\frac{3}{4}x-\frac{4}{5}x<0
Subtract \frac{4}{5}x from both sides.
\frac{23997}{4}-\frac{1}{20}x<0
Combine \frac{3}{4}x and -\frac{4}{5}x to get -\frac{1}{20}x.
-\frac{1}{20}x<-\frac{23997}{4}
Subtract \frac{23997}{4} from both sides. Anything subtracted from zero gives its negation.
x>-\frac{23997}{4}\left(-20\right)
Multiply both sides by -20, the reciprocal of -\frac{1}{20}. Since -\frac{1}{20} is negative, the inequality direction is changed.
x>\frac{-23997\left(-20\right)}{4}
Express -\frac{23997}{4}\left(-20\right) as a single fraction.
x>\frac{479940}{4}
Multiply -23997 and -20 to get 479940.
x>119985
Divide 479940 by 4 to get 119985.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}