Solve for k
k=-\frac{192\left(x-25\right)}{x\left(16-x\right)}
x\neq 16\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{8\left(\sqrt{\left(k-48\right)\left(k-3\right)}-k-12\right)}{k}\text{; }x=\frac{8\left(\sqrt{\left(k-48\right)\left(k-3\right)}+k+12\right)}{k}\text{, }&k\neq 0\\x=25\text{, }&k=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{8\left(\sqrt{\left(k-48\right)\left(k-3\right)}-k-12\right)}{k}\text{; }x=\frac{8\left(\sqrt{\left(k-48\right)\left(k-3\right)}+k+12\right)}{k}\text{, }&k\geq 48\text{ or }\left(k\neq 0\text{ and }k\leq 3\right)\\x=25\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x\times 600-2kxx+32kx-9600=216x
Multiply both sides of the equation by x.
x\times 600-2kx^{2}+32kx-9600=216x
Multiply x and x to get x^{2}.
-2kx^{2}+32kx-9600=216x-x\times 600
Subtract x\times 600 from both sides.
-2kx^{2}+32kx-9600=-384x
Combine 216x and -x\times 600 to get -384x.
-2kx^{2}+32kx=-384x+9600
Add 9600 to both sides.
\left(-2x^{2}+32x\right)k=-384x+9600
Combine all terms containing k.
\left(32x-2x^{2}\right)k=9600-384x
The equation is in standard form.
\frac{\left(32x-2x^{2}\right)k}{32x-2x^{2}}=\frac{9600-384x}{32x-2x^{2}}
Divide both sides by -2x^{2}+32x.
k=\frac{9600-384x}{32x-2x^{2}}
Dividing by -2x^{2}+32x undoes the multiplication by -2x^{2}+32x.
k=\frac{192\left(25-x\right)}{x\left(16-x\right)}
Divide -384x+9600 by -2x^{2}+32x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}